【题目】已知函数y=f(x)是R上的奇函数,且在区间(0,+∞)单调递增,若f(﹣2)=0,则不等式xf(x)<0的解集是 .
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,
(1)若E为DD1的中点,证明:BD1∥面EAC
(2)求证:AC⊥平面BB1D1D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ ,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1 , x2 , x3 , x4 , 则[2﹣f(x1)][2﹣f(x2)][2﹣f(x3)][2﹣f(x4)]的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga ,g(x)=loga(x+2a)+loga(4a﹣x),其中a>0,且a≠1.
(1)求f(x)的定义域,并判断f(x)的奇偶性;
(2)已知区间D=[2a+1,2a+ ]满足3aD,设函数h(x)=f(x)+g(x),h(x)的定义域为D,若对任意x∈D,不等式|h(x)|≤2恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义函数 ,其中x为自变量,a为常数. (I)若当x∈[0,2]时,函数fa(x)的最小值为一1,求a之值;
(II)设全集U=R,集A={x|f3(x)≥fa(0)},B={x|fa(x)+fa(2﹣x)=f2(2)},且(UA)∩B≠中,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=( )x的图象与函数y=g(x)的图象关于直线y=x对称,令h(x)=g(1﹣x2),则关于函数y=h(x)的下列4个结论: ①函数y=h(x)的图象关于原点对称;
②函数y=h(x)为偶函数;
③函数y=h(x)的最小值为0;
④函数y=h(x)在(0,1)上为增函数
其中,正确结论的序号为 . (将你认为正确结论的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|x|(2﹣x)
(1)作出函数f(x)的大致图象,并指出其单调区间;
(2)若函数f(x)=c恰有三个不同的解,试确定实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,则异面直线A1C与B1C1所成的角为( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com