精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心为,半径为1的圆.

(1)求曲线 的直角坐标方程;

(2)设为曲线上的点, 为曲线上的点,求的取值范围.

【答案】(1) 的直角坐标方程为 的直角坐标方程为.(2) .

【解析】试题分析:(1)利用平方法消去参数可得的直角坐标方程,将极坐标化为直角坐标可得曲线的圆心的直角坐标为,结合半径为可得的直角坐标方程;(2)根据曲线的参数方程设,根据两点间的距离公式,由三角函数和二次函数的性质可得的取值范围,结合圆的几何性质可得答案.

试题解析:(1)消去参数可得的直角坐标方程为

曲线的圆心的直角坐标为

的直角坐标方程为. 

(2)设,则

,∴ ,根据题意可得 ,即的取@值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,且曲线处的切线方程为.

(1)求 的值;

(2)求函数上的最小值;

(3)证明:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的方程是,圆的参数方程是为参数)以原点为极点, 轴的非负半轴为极轴建立极坐标系.

(1)分别求直线与圆的极坐标方程;

(2)射线: )与圆的交点为 两点,与直线交于点射线: 与圆交于 两点,与直线交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的导函数,且对任意的实数都有是自然对数的底数),,若不等式的解集中恰有两个整数,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中是自然常数.

(1)判断函数内零点的个数,并说明理由;

(2) ,使得不等式成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018广东省深中、华附、省实、广雅四校联考已知椭圆的离心率为,圆轴交于点 为椭圆上的动点, 面积最大值为

I求圆与椭圆的方程;

II的切线交椭圆于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当求函数处的切线方程

(2)当求函数的单调区间

(3)在(1)的条件下,证明:(其中为自然对数的底数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知ABC是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且,|BC|=2|AC|.

(1)求椭圆E的方程;

(2)在椭圆E上是否存点Q,使得?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.

(3)过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为MN,若直线MNx轴、y轴上的截距分别为mn,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于厘米的玉米为高茎玉米,否则为矮茎玉米

(1)完成列联表,并判断是否可以在犯错误概率不超过的前提下,认为抗倒伏与玉米矮茎有关?

(2)为了改良玉米品种,现采用分层抽样的方式从抗倒伏的玉米中抽出株,再从这株玉米中选取株进行杂交实验,选取的植株均为矮茎的概率是多少?

,其中

查看答案和解析>>

同步练习册答案