精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足f(x+
3
2
)+f(x)=0
,且函数y=f(x-
3
4
)
为奇函数,给出下列命题:①函数f(x)的最小正周期是
3
2
;②函数y=f(x)的图象关于点(-
3
4
,0)
对称;③函数y=f(x)的图象关于y轴对称.其中真命题的个数是(  )
A.3B.2C.1D.0
①:由题意可得f(x+3)=-f(x+
3
2
)=f(x)则函数f(x)是周期函数且其周期为3,故①错误
②:由y=f(x-
3
4
)是奇函数可得其图象关于原点(0,0)对称,由y=f(x-
3
4
)向左平移
3
4
个单位长度可得y=f(x)的图象,则函数f(x)的图象关于点(-
3
4
,0)对称,故②正确
③:由②知,对于任意的x∈R,都有f(-
3
4
-x)=-f( -
3
4
+
x),用
3
4
+x
代换x,可得:f(-
3
2
-x)+f(x)=0
∴f(-
3
2
-x)=-f(x)=f(x+
3
2
)对于任意的x∈R都成立.令t=
3
2
+x,则f(-t)=f(t),则可得函数f(x)是偶函数,图象关于y轴对称,故③正确
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案