精英家教网 > 高中数学 > 题目详情
已知点(1,
1
3
)
是函数f(x)=ax(a>0,且a≠1)的图象上一点.等比数列{an}的前n项和为f(n)-1.数列{bn}(bn>0)的首项为1,且前n项和sn满足sn-sn-1=
sn
+
sn_1
(n≥2)

(1)求数列{an}和{bn}的通项公式;
(2)若数列{
1
bnbn_1
}
的前n项和为Tn,问满足Tn
1000
2012
的最小正整数n是多少?
分析:(1)由点(1,
1
3
)
是函数f(x)=ax(a>0,且a≠1)的图象上一点,知f(1)=a=
1
3
,所以f(x)=(
1
3
)x
,由此能求出数列{an}和{bn}的通项公式.
(2)Tn=
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1
=
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)×(2n+1)
,利用裂项求和法能够求出满足Tn
1000
2012
的最小正整数.
解答:解:(1)∵点(1,
1
3
)
是函数f(x)=ax(a>0,且a≠1)的图象上一点,
f(1)=a=
1
3

∵等比数列{an}的前n项和为f(n)-1,f(x)=(
1
3
)x

a1=f(1)-1=-
2
3

a2=[f(2)-1]-[f(1)-1]=-
2
9

公比q=
a2
a1
=
1
3

所以an=-
2
3
(
1
3
)n-1=-2(
1
3
)n
,n∈N*;…(3分)
Sn-Sn-1=(
Sn
-
Sn-1
)(
Sn
+
Sn-1
)=
Sn
+
Sn-1
(n≥2)
又bn>0,
Sn
>0

Sn
-
Sn-1
=1

∴数列{
Sn
}
构成一个首相为1公差为1的等差数列,
Sn
=1+(n-1)×1=n
Sn=n2
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1
∴bn=2n-1(n∈N*).…(7分)
(2)Tn=
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1

=
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)×(2n+1)

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)+…+
1
2
(
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)=
n
2n+1
,…(10分)
Tn=
n
2n+1
1000
2012
n>
500
6
…(13分)
满足Tn
1000
2012
的最小正整数为84.…(14分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法和应用,解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(1,
1
3
)
是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足:Sn-Sn-1=
Sn
 + 
Sn-1
(n≥ 2)
.记数列{
1
bnbn+1
}
前n项和为Tn
(1)求数列an和bn的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
2
Tn
恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是以F1、F2为左、右焦点的双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
左支上一点,且满足PF1⊥PF2,且|PF1|:|PF2|=2:3,则此双曲线的离心率为(  )
A、
2
B、
3
C、
5
D、
13

查看答案和解析>>

科目:高中数学 来源: 题型:

11、已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(1,
1
3
)是函数f(x)=ax(a>0)且a≠1)的图象上一点,等比数列{an}的前n项和Tn=f(n)-c(c为常数).数列{bn}的各项为正数,首项为c,前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(Ⅰ)求常数c;
(Ⅱ)求数列{an}和{bn}的通项公式.

查看答案和解析>>

同步练习册答案