精英家教网 > 高中数学 > 题目详情
已知f1(x)=log3x,f2(x)=(x+3)
1
2
+1
,f3(x)=tanx,则f1[f2(f3(
π
4
))]
=
1
1
分析:将x=
π
4
代入f3(x)=tanx,利用特殊角的三角函数值求出f3
π
4
)的值,将x=f3
π
4
)代入f2(x)=(x+3) 
1
2
+1中,计算后求出f2(f3
π
4
))的值,将求出的f2(f3
π
4
))值代入f1(x)=log3x,利用对数的运算法则计算,即可得到所求式子的值.
解答:解:∵f3
π
4
)=tan
π
4
=1,f2(x)=(x+3) 
1
2
+1,
∴f2(f3
π
4
))=f2(1)=(1+3) 
1
2
+1=2+1=3,
又f1(3)=log33=1,
∴f1[f2(f3
π
4
))]=f1(3)=1.
故答案为:1
点评:此题考查了运用诱导公式化简求值,以及函数的值,涉及的知识有:特殊角的三角函数值,二次根式的化简,以及对数的运算性质,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在R上定义运算:p?q=-
1
3
(p-c)(q-b)+4bc
(b、c∈R是常数),已知f1(x)=x2-2c,f2(x)=x-2b,f(x)=f1(x)f2(x).
①如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值;
②求曲线y=f(x)上斜率为c的切线与该曲线的公共点;
③记g(x)=|f′(x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=sinx+cosx,记f2(x)=f′1(x),f3(x)=f′2(x),…,fn(x)=f′n-1(x),( n∈N*,n≥2).则f1
π
4
)+f2
π
4
)+…+f2010
π
4
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=sinx+cosx,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x),(n∈N*,n≥2),则f1(
π
2
)+f2(
π
2
)+…+f2012(
π
2
)
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x),则f2010(x)为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙F1(x+
3
)2+y2=16
F2(
3
,0)
,在⊙F1上取点P,连接PF2,作出线段PF2的垂直平分线交PF1于M,当点P在⊙F1上运动时M形成曲线C.(如图)
(1)求曲线C的轨迹方程.
(2)过点F2的直线l交曲线C于R,T两点,满足|RT|=
3
2
,求直线l的方程.
(3)点Q在曲线C上,且满足F1QF2=
π
3
,求SF1F2Q

查看答案和解析>>

同步练习册答案