.(本小题满分14分)设抛物线的方程为,为直线上任意一点,过点作抛物线的两条切线,切点分别为,.
(1)当的坐标为时,求过三点的圆的方程,并判断直线与此圆的位置关系;
(2)求证:直线恒过定点;
(3)当变化时,试探究直线上是否存在点,使为直角三角形,若存在,有几个这样的点,若不存在,说明理由.
解:(1)当的坐标为时,设过点的切线方程为,代入,整理得,
令,解得,
代入方程得,故得, .................2分
因为到的中点的距离为,
从而过三点的圆的方程为.
易知此圆与直线相切. ..................4分
(2)证法一:设切点分别为,,过抛物线上点的切线方程为,代入,整理得
,又因为,所以................5分
从而过抛物线上点的切线方程为即
又切线过点,所以得 ① 即
同理可得过点的切线为,
又切线过点,所以得 ② 即.................6分
即点,均满足即,故直线的方程为 .................7分
又为直线上任意一点,故对任意成立,所以,从而直线恒过定点 ..................8分
证法二:设过的抛物线的切线方程为,代入,消去,得
即:.................5分
从而,此时,
所以切点的坐标分别为,.................6分
因为,,
,
所以的中点坐标为
故直线的方程为,即...............7分
又为直线上任意一点,故对任意成立,所以,从而直线恒过定点 ..................8分
证法三:由已知得,求导得,切点分别为,,故过点的切线斜率为,从而切线方程为即
又切线过点,所以得 ① 即
同理可得过点的切线为,
又切线过点,所以得 ②
即.................6分
即点,均满足即,故直线的方程为 .................7分
又为直线上任意一点,故对任意成立,所以,从而直线恒过定点 ..................8分
(3)解法一:由(2)中①②两式知是方程的两实根,故有
(*)
将,,代入上(*)式得
∴
, .................9分
①当时,,直线上任意一点均有,为直角三角形; .................10分
②当时,,,不可能为直角三角形;
.................11分
③当时,,.
因为,,
所以
若,则,整理得,
又因为,所以,
因为方程有解的充要条件是.
所以当时,有或,为直角三角形..............13分
综上所述,当时,直线上任意一点,使为直角三角形,当时,直线上存在两点,使为直角三角形;当或时,不是直角三角形.
.................14分
解法二:由(2)知,且是方程的两实根,即,从而,
所以
当时,即时,直线上任意一点均有,为直角三角形; .................10分
当时,即时,与不垂直。
因为,,
所以
若,则,整理得,
又因为,所以,
因为方程有解的充要条件是.
所以当时,有或,为直角三角形..............13分
综上所述,当时,直线上任意一点,使为直角三角形,当时,直线上存在两点,使为直角三角形;当或时,不是直角三角形.
.................14分
【解析】略
科目:高中数学 来源: 题型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.
(Ⅰ)写出销售额关于第天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知的图像在点处的切线与直线平行.
⑴ 求,满足的关系式;
⑵ 若上恒成立,求的取值范围;
⑶ 证明:()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com