精英家教网 > 高中数学 > 题目详情
17.设△ABC的内角A,B,C所对的边长分别为a,b,c,若bcosC+ccosB=2acosA,则A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{3}$或$\frac{2π}{3}$

分析 根据正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知等式可得sinA=2sinAcosA,结合范围A∈(0,π),求得cosA=$\frac{1}{2}$,利用特殊角的三角函数值即可得解A的值.

解答 解:∵bcosC+ccosB=2acosA,
∴由正弦定理可得:sinBcosC+sinCcosB=2sinAcosA,
可得:sin(B+C)=sinA=2sinAcosA,
∵A∈(0,π),sinA≠0,
∴cosA=$\frac{1}{2}$,
∴可得A=$\frac{π}{3}$.
故选:B.

点评 本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,特殊角的三角函数值的应用,解题的关键是利用正弦定理把等式中的边转化为角的正弦,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知直线l的方程为$x-\sqrt{3}y+2=0$,则直线l的倾斜角为(  )
A.30°B.45°C.60°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=g(x)•h(x),其中函数g(x)=ex,h(x)=x2+ax+a.
(1)求函数g(x)在(1,g(1))处的切线方程;
(2)当0<a<2时,求函数f(x)在x∈[-2a,a]上的最大值;
(3)当a=0时,对于给定的正整数k,问函数F(x)=e•f(x)-2k(lnx+1)是否有零点?请说明理由.(参考数据e≈2.718,$\sqrt{e}$≈1.649,e$\sqrt{e}$≈4.482,ln2≈0.693)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若圆x2+y2=1与圆x2+y2+6x-8y+m=0相切,则m的值为-11或9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,已知正方体ABCD-A1B1C1D1的棱长为1,长为1的线段MN的一个端点M在棱DD1上运动,点N在正方形ABCD内运动,则MN中点P的轨迹的面积为(  )
A.$\frac{π}{2}$B.$\frac{π}{16}$C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若等差数列{an}的前n项和为Sn,且S5=20,则a3等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x≥5,则f(x)=$\frac{{x}^{2}-4x+9}{x-4}$有(  )
A.最大值8B.最小值10C.最大值12D.最小值14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设F1,F2是椭圆C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}$=1(a1>b1>0)与双曲线C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}$=1(a2>0,b2>0)的公共焦点,曲线C1,C2在第一象限内交于点M,∠F1MF2=90°,若椭圆C1的离心率e1∈[$\frac{{\sqrt{6}}}{3}$,1),则双曲线C2的离心率e2的范围是(  )
A.$({1,\sqrt{3}}]$B.$({1,\sqrt{2}}]$C.$[{\sqrt{3},+∞})$D.$[{\sqrt{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的函数f(x)满足f(4+x)=f(x),且x∈(-2,2]时,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}(|x+\frac{1}{x}|-|x-\frac{1}{x}|),0<x≤2}\\{-({x}^{2}+2x),-2<x≤0}\end{array}\right.$则函数g(x)=f(x)-|log4|x||的零点个数是(  )
A.4B.7C.8D.9

查看答案和解析>>

同步练习册答案