精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分图象如图所示,则f()=________.
由题中图象可知,此正切函数的半周期等于,即最小正周期为,所以ω=2.由题意可知,图象过定点(,0),所以0=Atan(2×+φ),即+φ=kπ(k∈Z),所以φ=kπ- (k∈Z),又|φ|<,所以φ=.又图象过定点(0,1),所以A=1.综上可知,f(x)=tan(2x+),故有f()=tan(2×)=tan
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数在区间的简图是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=sin2x+acos2x的图象左移π个单位后所得函数的图象关于直线对称,则a=(    )
A.1B.C.-1D.-

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=Asin(2x+θ),其中A≠0,θ∈(0,).

(1)若函数f(x)的图象过点E(-,1),F(),求函数f(x)的解析式;
(2)如图,点M,N是函数y=f(x)的图象在y轴两侧与x轴的两个相邻交点,函数图象上一点P(t,)满足·,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若其图象向右平移个单位后得到的函数为奇函数,则函数f(x)的图象(  )
A.关于点(,0)对称B.关于直线x=对称
C.关于点(,0)对称D.关于直线x=对称

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=|sin(2x+)|,则下列关于函数f(x)的说法中正确的是(  )
A.f(x)是偶函数
B.f(x)的最小正周期为π
C.f(x)的图象关于点(-,0)对称
D.f(x)在区间[]上是增函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的最小正周期为,且满足
,则 (     )
A.上单调递减B.上单调递减
C.上单调递增D.上单调递增

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数++(为常数)
(1)求函数的最小正周期;
(2)若函数上的最大值与最小值之和为,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为了得到函数的图像,可以将函数的图像(   )
A.向右平移个单位B.向左平移个单位
C.向右平移个单位D.向左平移个单位

查看答案和解析>>

同步练习册答案