(本小题满分12分)
如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点. 且PQ∥OA交OB于点Q.
(1)若和四边形的面积满足时,请你确定P点在AB上的位置,并求出线段PQ的长;
(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点与的坐标;若不存在,说明理由.
(1)P为AB的中点,PQ=4;(2)点、的坐标分别为(0,0),();或者点、的坐标分别为(,0),();或者点、的坐标分别为(,0),()。
解析试题分析:(1)
即P为AB的中点, ∴PQ=="4" .--------------------------4分
(2)由已知得l方程为3x+4y="24" (*)
①当∠PQM=90°时,由PQ∥OA且|PQ|=|MQ|此时M点与原点O重合,设Q(0,a)则P(a,a)
有(a,a)代入(*)式得a=.
点、的坐标分别为(0,0),()----------------------6分
②当∠MPQ=90°,由PQ∥OA 且|MP|=|PQ|设Q(0,a,)则M(0, a), P(a,a)进而得a=
∴点、的坐标分别为(,0),()----------------------8分
③当∠PMQ=90°,由PQ∥OA,|PM|=|MQ|且|OM|=|OQ|= |PQ|
设Q(0,a,)则M(a,0)点P坐标为(2a,a)代入(*)式 得a=.
∴点、的坐标分别为(,0),()----------------------12分
考点:直线方程的应用。
点评:学生做此题的第二问时,一定要认真审题,注意分类讨论思想的应用。要满足∆PQM为直角三角形,需要讨论三个内角分别为直角的情况。
科目:高中数学 来源: 题型:解答题
(本题满分14分)在平面直角坐标系中,已知点A(-2,1),直线。
(1)若直线过点A,且与直线垂直,求直线的方程;
(2)若直线与直线平行,且在轴、轴上的截距之和为3,求直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)
已知点,是抛物线上相异两点,且满足.
(Ⅰ)若的中垂线经过点,求直线的方程;
(Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com