精英家教网 > 高中数学 > 题目详情
8.观察下列式子:
$\begin{array}{l}1+\frac{1}{2^2}<1+\frac{1}{2}\\ 1+\frac{1}{2^2}+\frac{1}{3^2}<1+\frac{2}{3}\\ 1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<1+\frac{3}{4}\end{array}$
根据以上式子可以猜想:1+$\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{n^2}$<1+$\frac{n-1}{n}$(n≥2).

分析 根据规律,不等式的左边是n+1个自然数倒数的平方的和,右边分母是以2为首项,1为公差的等差数列,分子是以3为首项,2为公差的等差数列,由此可得结论.

解答 解:根据规律,
不等式的左边是n+1个自然数倒数的平方的和,
右边分母是以2为首项,1为公差的等差数列,
分子是以3为首项,2为公差的等差数列,
所以第n个不等式应该为1+$\frac{1}{{2}^{2}}$+$\frac{{1}^{\;}}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<1+$\frac{n-1}{n}$.
故答案为:1+$\frac{n-1}{n}$.

点评 本题考查归纳推理,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知f(x)=alnx+$\frac{1}{2}$x2(a>0),若对任意两个不等的正实数x1,x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$≥2恒成立,则a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在极坐标系中,圆C1:ρ=2cosθ与圆C2:ρ=2sinθ相交于 A,B两点,则|AB|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:ρsin2θ-6cosθ=0,直线l的参数方程为:$\left\{\begin{array}{l}{x=3+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),l与C交于P1,P2两点.
(1)求曲线C的直角坐标方程及l的普通方程;
(2)已知P0(3,0),求||P0P1|-|P0P2||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某冷饮店为了解气温对其营业额的影响,随机记录了该店1月份销售淡季中的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如表所示:
x367910
y1210887
(Ⅰ)判定y与x的是正相关还是负相关;并求回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)若该地1月份某天的最低气温为0℃,预测该店当日的营业额
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n\overline{{x}^{2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=2+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ=2.
(Ⅰ) 若点M的直角坐标为(2,$\sqrt{3}$),直线l与曲线C1交于A、B两点,求|MA|+|MB|的值.
(Ⅱ)设曲线C1经过伸缩变换$\left\{\begin{array}{l}x'=\frac{{\sqrt{3}}}{2}x\\ y'=\frac{1}{2}y\end{array}\right.$得到曲线C2,求曲线C2的内接矩形周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下列关于空间向量的命题中,正确的有①③④.
①若向量$\overrightarrow{a}$,$\overrightarrow{b}$与空间任意向量都不能构成基底,则$\overrightarrow{a}$∥$\overrightarrow{b}$;
②若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$则有$\overrightarrow{a}$∥$\overrightarrow{c}$;
③若$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$是空间的一组基底,且$\overrightarrow{OD}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$,则A,B,C,D四点共面;
④若向量$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{b}$+$\overrightarrow{c}$,$\overrightarrow{c}$+$\overrightarrow{a}$,是空间一组基底,则$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$也是空间的一组基底.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.{an}是各项均不为0的等差数列,{bn}是等比数列,若a1-a${\;}_{7}^{2}$+a13=0,且b7=a7,则b3b11=(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定积分${∫}_{0}^{1}$exdx=(  )
A.1+eB.eC.e-1D.1-e

查看答案和解析>>

同步练习册答案