精英家教网 > 高中数学 > 题目详情

(1)(本小题满分7分)选修4—2:矩阵与变换

已知二阶矩阵有特征值及对应的一个特征向量

(Ⅰ)求矩阵

(Ⅱ)设曲线在矩阵的作用下得到的方程为,求曲线的方程.

 

【答案】

解:(Ⅰ)=,∴

解得.                         …………………4分

(Ⅱ)设点为曲线上的任一点,它在矩阵的作用下得到的点为

,所以

代入

所以所求的曲线方程为.     .…………………………7分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)(本小题满分7分)选修4-4:矩阵与变换

已知曲线绕原点逆时针旋转后可得到曲线

(I)求由曲线变换到曲线对应的矩阵;   

(II)若矩阵,求曲线依次经过矩阵对应的变换变换后得到的曲线方程.

 

查看答案和解析>>

科目:高中数学 来源:2011届广东省南塘中学高三下学期期初考试数学理卷 题型:解答题

本题有⑴、⑵、⑶三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.
(1)(本小题满分7分)选修4—2:矩阵与变换
已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点变换成,求矩阵M。
(2)(本小题满分7分)选修4—4:坐标系与参数方程
过点M(3,4),倾斜角为的直线与圆C:为参数)相交于A、B两点,试确定的值。
(3)(本小题满分7分)选修4—5:不等式选讲
已知实数满足,试确定的最大值。

查看答案和解析>>

科目:高中数学 来源:2010年高考试题分项版理科数学之专题十七 选修系列 题型:解答题

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分。如果多做,则按所做的前两题记分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵M=,N=,且MN=
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换作用下的像的方程。
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线L的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为=2sin
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线L交于点A,B。若点P的坐标为(3,),求∣PA∣+∣PB∣。
(3)(本小题满分7分)选修4-5:不等式选讲
已知函数f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集为,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省泉州市高三毕业班质量检查理科数学试卷(解析版) 题型:解答题

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2个小题作答,满分14分.如果多做,则按所做的前两题记分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4—2:矩阵与变换

在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换

(Ⅰ)求复合变换的坐标变换公式;

(Ⅱ)求圆在复合变换的作用下所得曲线的方程.

(2)(本小题满分7分)选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),分别为直线轴、轴的交点,线段的中点为

(Ⅰ)求直线的直角坐标方程;

(Ⅱ)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标和直线的极坐标方程.

(3)(本小题满分7分)选修4—5:不等式选讲

已知不等式的解集与关于的不等式的解集相等.

(Ⅰ)求实数的值;

(Ⅱ)求函数的最大值,以及取得最大值时的值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高三下学期期初考试数学理卷 题型:解答题

本题有⑴、⑵、⑶三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.

(1)(本小题满分7分)选修4—2:矩阵与变换

已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点变换成,求矩阵M。

(2)(本小题满分7分)选修4—4:坐标系与参数方程

过点M(3,4),倾斜角为的直线与圆C:为参数)相交于A、B两点,试确定的值。

(3)(本小题满分7分)选修4—5:不等式选讲

已知实数满足,试确定的最大值。

 

 

查看答案和解析>>

同步练习册答案