精英家教网 > 高中数学 > 题目详情
(2011•渭南三模)平面上:在正三角形ABC中,若D是BC的中点,G是三角形ABC的重心,则
AG
GD
=2
;空间中:在正四面体ABCD中,若三角形BCD中心为M,正四面体ABCD中心为O,则
AO
OM
=
3
3
分析:本题考查的知识点是类比推理,由平面图形的性质类比猜想空间几何体的性质,一般的思路是:点到线,线到面,或是二维变三维;由题目中在正三角形ABC中,若D是边BC中点,G是三角形ABC的重心,则
AG
GD
=2
中的结论是二维线段长与线段长的关系,类比后的结论应该为三维的边与边的关系.
解答:解:由平面图形的性质类比猜想空间几何体的性质,
一般的思路是:点到线,线到面,或是二维变三维;
由题目中“在正三角形ABC中,若D是BC的中点,G是三角形ABC的重心,则
AG
GD
=2
”,
我们可以推断:“在正四面体ABCD中,若三角形BCD中心为M,正四面体ABCD中心为O,则
AO
OM
=3.”
理由如下:
设正四面体ABCD边长为1,易求得AM=
6
3
,又O到四面体各面的距离都相等,
所以O为四面体的内切球的球心,设内切球半径为r,
则有r=
3V
S
,可求得r即OM=
6
12

所以AO=AM-OM=
6
4
,所以
AO
OM
=3.
故答案为:3.
点评:本题考查类比推理知识,由平面到空间的类比是经常考查的知识,要认真体会其中的类比方式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•渭南三模)已知某程序框图如图所示,则执行该程序后输出的结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•渭南三模)已知|
a
|=2
|
b
|=3
a
b
的夹角为60°,则|2
a
-
b
|
=
13
13

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•渭南三模)已知U=R,A={x|0<x<2},B={x|2x-1≥1},则A∩CUB=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•渭南三模)已知正三棱柱的侧面积为36,其三视图如图所示,则它的左视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•渭南三模)下列命题正确的是(  )

查看答案和解析>>

同步练习册答案