精英家教网 > 高中数学 > 题目详情

【题目】已知直线l与圆C:x2+y2+2x﹣4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)若圆C的半径为 ,求实数a的值;
(2)若弦AB的长为6,求实数a的值;
(3)当a=1时,圆O:x2+y2=2与圆C交于M,N两点,求弦MN的长.

【答案】
(1)解:圆C的标准方程为(x+1)2+(y﹣2)2=5﹣a

由圆的半径为3可知,5﹣a=9,所以a=﹣4


(2)解:弦 ,解得a=﹣6

(3)解:当a=1时,圆C为x2+y2+2x﹣4y+1=0,

又圆P:P:x2+y2=2

所以两圆的相交弦所在直线方程为2x﹣4y+3=0

圆心O到MN的距离为

所以


【解析】(1)根据已知由圆的标准方程求出结果。(2)由勾股定理可求出弦长的一半,进而得到弦 A B。(3)首先求出两个圆相交的弦所在直线方程,根据圆心到直线的距离公式求出该距离,进而得到 M N的值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用t(t≥0)万元满足x=4﹣ (k为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均生产投入成本的1.5倍(生产投入成本包括生产固定投入和生产再投入两部分).
(1)求常数k,并将该厂家2016年该产品的利润y万元表示为年促销费用t万元的函数;
(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一名大学生尝试开家网店销售一种学习用品,经测算每售出1盒该产品可获利30元,未售出的商品每盒亏损10元.根据统计资料,得到该商品的月需求量的频率分布直方图如图所示,该同学为此购进180盒该产品,以x(单位:盒,100≤x≤200)表示一个月内的市场需求量,y(单位:元)表示一个月内经销该产品的利润.

(1)根据直方图估计这个月内市场需求量x的平均数;

(2)将y表示为x的函数;

(3)根据直方图估计这个月利润不少于3 800元的概率(用频率近似概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{log2(an﹣1)}(n∈N*)为等差数列,且a1=3,a2=5,则 + +…+ )=( )
A.1
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的平分线所在直线的方程为y=0.

(1)求点A的坐标;
(2)若点B的坐标为(1,2),求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|(x﹣3)(x﹣3a﹣5)<0},函数y=lg(﹣x2+5x+14)的定义域为集合B.
(1)若a=4,求集合A∩B;
(2)若“x∈A”是“x∈B”的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业投资公司拟开发某种新能源产品,估计能获得万元到万元的投资利益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过收益的

)请分析函数是否符合公司要求的奖励函数模型,并说明原因.

)若该公司采用函数模型作为奖励函数模型,试确定最小正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有同一型号的电脑96,为了了解这种电脑每开机一次所产生的辐射情况,从中抽取10台在同一条件下做开机实验,测量开机一次所产生的辐射,得到如下数据:

13.7 12.9 14.4 13.8 13.3

12.7 13.5 13.6 13.1 13.4

(1)写出采用简单随机抽样抽取上述样本的过程;

(2)根据样本,请估计总体平均数与总体标准差的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四边形OABC的四个顶点坐标分别为O(0,0)、A(6,2)、B(4,6)、C(2,6),直线ykx(<k<3)分四边形OABC为两部分,S表示靠近x轴一侧的那一部分的面积.

(1)求Sf(k)的函数表达式;

(2)当k为何值时,直线ykx将四边形OABC分为面积相等的两部分?

查看答案和解析>>

同步练习册答案