分析 根据函数的性质进行求解即可求出函数的值域.
解答 解:(1)f(x)=4x-2x+1=(2x-$\frac{1}{2}$)2+$\frac{3}{4}$,
∵2x>0,
∴f(x)=(2x-$\frac{1}{2}$)2+$\frac{3}{4}$≥$\frac{3}{4}$,
即函数的值域为[$\frac{3}{4}$,+∞)
(2)f(x)=9x-3x+3+20=(3x)2-3•3x+20=(3x-$\frac{3}{2}$)2+$\frac{71}{4}$,
∵3x>0,
∴f(x)=(3x-$\frac{3}{2}$)2+$\frac{71}{4}$≥$\frac{71}{4}$,
即函数的值域为[$\frac{71}{4}$,+∞)
(3)y=x-4$\sqrt{x}$+6=($\sqrt{x}$-2)2+2,
∵1≤x≤25,∴1≤$\sqrt{x}$≤5,
故当$\sqrt{x}$=2时,函数取得最小值y=2,
当$\sqrt{x}$=5时,函数取得最大值y=(5-2)2+2=9+2=11,
即函数的值域为[2,11].
(4)y=$\frac{1}{{x}^{2}}$-$\frac{4}{x}$+6=($\frac{1}{x}$-2)2+2,
∵$\frac{1}{5}$≤x≤2,∴$\frac{1}{2}$≤$\frac{1}{x}$≤5.
故当故当$\frac{1}{x}$=2时,函数取得最小值y=2,
当$\frac{1}{x}$=5时,函数取得最大值y=(5-2)2+2=9+2=11,
即函数的值域为[2,11].
点评 本题主要考查函数值域的求解,利用整体法结合一元二次函数的性质进行求解是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,+∞) | B. | (0,+∞) | C. | (0,2)∪[$\frac{5}{2}$,+∞) | D. | (-∞,2)∪[$\frac{5}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com