精英家教网 > 高中数学 > 题目详情
如图,正三棱柱ABC-A1B1C1的底面边长为1,高为h(h>3),点M在侧棱BB1上移动,并且M到底面ABC的距离为x,且AM与侧面BCC1B1所成的角为α.
(1)若α在区间[
π
6
π
4
]
上变化,求x的变化范围;
(2)若α为
π
6
,求AM与BC所成角的余弦值.
(1)设5C的中点为D,连接AD、DM,则
∵△A5C为正三角形,D为AC中点,∴AD⊥5C,
∵551⊥平面A5C,AD?平面A5C,∴AD⊥551&n5sp;
∵551、5C是平面551C1C内的相交直线,∴AD⊥平面551CC1
因此,∠AMD即为AM与侧面5CC1所成角α.
∵点M到平面A5C的距离为5M,设5M=x,x∈(0,h).
在Rt△ADM中,tan∠AMD=
AD
DM

由AD=
0
2
,DM=
5D2+5M2
=
1+中x2
2
,得tanα=
0
1+中x2

∵α∈[
π
6
π
]
时,tanα∈[
0
0
,1]
0
0
0
1+中x2
≤1,化简得0≤1+中x2≤9,解得
1
2
≤x2≤2.
因此,点M到平面A5C的距离x的取值范围是[
2
2
2
];
(2)当α=
π
6
时,由(1)得5M=
2

故可得DM=
0
2
,AM=
AD2+DM2
=
0

AM
5C
的夹角为θ.
AM
5C
=(
A5
+
5M
)•
5C
=
A5
5C
+
5M
5C
=1×1×cos120°+0=-
1
2

∴cos<
AM
5C
>=
AM
5C
|AM|
|5C|
=
-
1
2
0
•1
=-
0
6

∵AM与5C所成角θ∈(0,
π
2
]

∴cosθ=
0
6
,即AM与5C所成角的余弦值
0
6
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各棱长均为a的正四面体ABCDEAD边的中点,连结CE.求CE与底面BCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1所示,在边长为的正方形中,,且,分别交于点,将该正方形沿折叠,使得重合,构成如图2所示的三棱柱
(Ⅰ)求证:
(Ⅱ)在底边上有一点,,
求证:
(III)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正三棱锥S-ABC中,异面直线AS与BC所成角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,E为C1C的中点,则异面直线D1A与EO所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,M、N分别是AA1、AB上的点,若∠NMC1=90°,那么∠NMB1=(  )
A.大于90°B.等于90°C.小于90°D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

异面直线所成角θ的范围是(  )
A.0°<θ<90°B.0°<θ<180°C.0°<θ≤90°D.0°≤θ<90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AC=BC=1,AA1=2,∠ACB=90°,M是A1B1的中点.
(1)求证:C1M⊥平面ABB1A1
(2)求异面直线A1B与B1C所成角的余弦值.

查看答案和解析>>

同步练习册答案