精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,底面为正三角形, 底面 的中点.

(1)求证: 平面

(2)求证:平面平面

3)在侧棱上是否存在一点使得三棱锥的体积是若存在,求出的长;若不存在,说明理由.

【答案】(1)见解析;(2)见解析;(3)

【解析】试题分析:1连接于点,连,由三角形中位线的性质得,再根据线面平行的判定可得结论。(2)先证平面,再由面面垂直的判定定理可得平面平面。(3)假设存在点满足题意,不妨设,由可得,从而可得点确实存在,且

试题解析

1如图,连接于点,连

由题意知,在三棱柱中,平面,

∴四边形为矩形,

∴点的中点.

的中点,

.

平面,平面.

平面.

2∵底面为正三角形,的中点,

,

平面,平面,

.

,

平面,

平面,

∴平面平面.

3假设在侧棱上存在一点,使三棱锥的体积是.

,,

,

,

解得,

.

,

∴ 在侧棱上存在一点,使得三棱锥的体积是,此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2)已知抛物线上一点,过点作抛物线的两条弦,且,判断直线是否过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级进行了百科知识大赛,为了了解高二年级900名同学的比赛情况,现在甲、乙两个班级各随机抽取了10名同学的成绩,比赛成绩满分为100分,80分以上可获得二等奖,90分以上可以获得一等奖,已知抽取的两个班学生的成绩(单位:分)数据的茎叶图如图1所示:

(1)比较两组数据的分散程度(只需要给出结论),并求出甲组数据的频率分布直方图如图2中所示的值;

(2)现从两组数据中获奖的学生里分别随机抽取一人接受采访,求被抽中的甲班学生成绩高于乙班学生成绩的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中, 平面 平面 ,且 的中点.

Ⅰ)求证:

Ⅱ)求平面与平面所成的锐二面角的余弦值.

Ⅲ)在棱上是否存在一点,使得直线与平面所成的角是.若存在,指出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,其中是实数.

1解关于的不等式

2)若求关于的方程实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过两点 且圆心在直线

(Ⅰ)求圆的标准方程;

(Ⅱ)直线过点且与圆有两个不同的交点 ,若直线的斜率大于0,求的取值范围;

(Ⅲ)在(Ⅱ)的条件下,是否存在直线使得弦的垂直平分线过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别是且有.

1)求

(2)若面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线过抛物线焦点,且与抛物线交于 两点,以线段为直径的圆与抛物线准线的位置关系是( )

A. 相离 B. 相交 C. 相切 D. 不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形, 是棱PD的中点,且

I)求证: Ⅱ)求二面角的大小;

Ⅲ)若上一点,且直线与平面成角的正弦值为,求的值.

查看答案和解析>>

同步练习册答案