精英家教网 > 高中数学 > 题目详情

设函数.
(1) 试问函数f(x)能否在x= 时取得极值?说明理由;
(2) 若a= ,当x∈[,4]时,函数f(x)与g(x)的图像有两个公共点,求c的取值范围.

(1)f(x)在x=-1处无极值.  (2)或c=

解析试题分析:解:(1) 由题意f′(x)=x2-2ax-a,
假设在x= -1时f(x)取得极值,则有f′(-1)=1+2a-a=0,∴a=-1,
而此时,f′(x)=x2+2x+1=(x+1)2≥0,函数f(x)在R上为增函数,无极值.
这与f(x)在x=-1有极值矛盾,所以f(x)在x=-1处无极值.
(2) 设f(x)=g(x),则有x3-x2-3x-c=0,∴c=x3-x2-3x,
设F(x)= x3-x2-3x,G(x)=c,令F′(x)=x2-2x-3=0,解得x1=-1或x=3.
列表如下:

x
-3
(-3,-1)
-1
(-1,3)
3
(3,4)
4
F′(x)
 
+
0
-
0
+
 
F(x)
-9



-9

-
由此可知:F(x)在(-3,-1)、(3,4)上是增函数,在(-1,3)上是减函数.
当x=-1时,F(x)取得极大值;当x=3时,F(x)取得极小值
F(-3)=F(3)=-9,而.
如果函数f(x)与g(x)的图像有两个公共点,则函数F(x)与G(x)有两个公共点,
所以或c=
考点:导数的运用
点评:主要是考查了导数在研究函数单调性以及函数极值中的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若在定义域上为增函数,求实数的取值范围;
(2)求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列中,,点在抛物线上;数列中,点在过点(0, 1),以为斜率的直线上。
(1)求数列的通项公式;
(2)若   , 问是否存在,使成立,若存在,求出值;若不存在,说明理由;
(3)对任意正整数,不等式恒成立,求正数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1﹣)元.
(1)求证:生产a千克该产品所获得的利润为100a(5+)元;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车速度为0;当车流密度不超过20辆/千米时,车流速度为60千米,/小时,研究表明:当时,车流速度v是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) 可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(I)当时,求的单调区间;
(II)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的二次项系数为,满足不等式的解集为(1,3),且方程有两个相等的实根,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,是偶函数。
(1)求的值;
(2)设对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某造船公司年造船量是20艘,已知造船x艘的产值函数为R(x)=3700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).
(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?

查看答案和解析>>

同步练习册答案