精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-1|+|x-2|.
(1)求函数f(x)的最小值;
(2)(文科)已知k为非零常数,若不等式|t-k|+|t+k|≥|k|f(x)对于任意t∈R恒成立,求实数x的取值集合;
(3)(理科)设不等式f(x)≤2的解集为集合A,若存在x∈A,使得x2+(1-a)x=-9求实数a的最小值.
分析:(1)先对函数进行化简可得f(x)=
2x-3 (x>2)
1      (1≤x≤2)
3-2x   (x<1)
,结合函数的性质可求函数的最小值
(2)由|t-k|+|t+k|≥|(t-k)-(t+k)|=2|k|
(|t-k|+|t+k|)min=2|k|
|t-k|+|t+k|≥|k|f(x)对于任意t∈R恒成立转化为f(x)≤2  即|x-1|+|x-2|≤2,解绝对值不等式可得x的取值集合
(3)由(1)可得A=[
1
2
5
2
]
,由x2+(1-a)x=-9得1-a=-
x2+9
x
=-(x+
9
x
)

结合函数x+
9
x
x∈[
1
2
5
2
]
上单调性 及
61
10
≤x+
9
x
37
2
  从而有-
37
2
≤1-a≤-
61
10
,解不等式可求a的取值范围,进而可求实数a的最小值
解答:解:(1)f(x)=
2x-3 (x>2)
1      (1≤x≤2)
3-2x   (x<1)

∴x>2时,2x-3>1;x<1时,3-2x>1;1≤x≤2时,f(x)=1
∴f(x)min=1
(2)∵|t-k|+|t+k|≥|(t-k)-(t+k)|=2|k|
(|t-k|+|t+k|)min=2|k|
问题转化为f(x)≤2  即|x-1|+|x-2|≤2
显然由
2x-3≤2
x>2
 得2<x≤
5
2

3-2x≤2
x<1
 得
1
2
≤x<1

∴实数x的取值集合为[
1
2
5
2
]

(3)A=[
1
2
5
2
]
,由x2+(1-a)x=-9得1-a=-
x2+9
x
=-(x+
9
x
)

由函数x+
9
x
x∈[
1
2
5
2
]
上单调递减∴
61
10
≤x+
9
x
37
2
 
-
37
2
≤1-a≤-
61
10
71
10
≤a≤
39
2

 故实数的最小值为
71
10
点评:(1)利用绝对值的几何意义是解决本题的关键(2)不等式的恒成立往往转化为求解函数的最值问题,(3)单调性的应用是解决此类问题的重要方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案