精英家教网 > 高中数学 > 题目详情
1.已知A,B,C为△ABC的三个内角,求解是否存在这样的A,B,C(A≠B≠C)使得cosA+cosB=cosC.

分析 首先,根据和差化积公式,化简等式的左边,然后,根据三角形内角和定理,适当的变形,得到相应的结论.

解答 解:存在.理由如下:
根据积化和差公式,
cosα+cosβ=2cos$\frac{α+β}{2}$•cos$\frac{α-β}{2}$,
得cosA+cosB=2cos$\frac{A+B}{2}$•cos$\frac{A-B}{2}$,
又A+B+C=π,代入到cosA+cosB=cosC中,
变形得:2cos$\frac{π-C}{2}$•cos$\frac{A-B}{2}$=cosC,
进一步变形:2sin$\frac{C}{2}$•cos$\frac{A-B}{2}$=1-2sin2$\frac{C}{2}$•
令 sin$\frac{C}{2}$=m,cos$\frac{A-B}{2}$=n,则0<m<1,0<n≤1.
则有:2m2+2mn-1=0,
∴n=$\frac{1-2{m}^{2}}{2m}$,
∵0<n≤1,
∴0<$\frac{1-2{m}^{2}}{2m}$≤1,
∴$\frac{\sqrt{3}-1}{2}≤m<\frac{\sqrt{2}}{2}$,
由y=sinx的单调性知:
$\frac{π}{6}<\frac{C}{2}<\frac{π}{4}$,
∴$\frac{π}{3}<C<\frac{π}{2}$,
推出$\frac{π}{3}<$π-(A+B)<$\frac{π}{2}$,
∴$\frac{π}{2}<A+B<\frac{2π}{3}$.
故存在这样的A,B,C(A≠B≠C)使得cosA+cosB=cosC.

点评 本题重点考查了和差化积公式、三角函数的单调性、内角和定理等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{{p}_{1}}$=(3,2),向量$\overrightarrow{{p}_{2}}$=(-1,2).
(1)若($\overrightarrow{{p}_{1}}$+k$\overrightarrow{{p}_{2}}$)∥(2$\overrightarrow{{p}_{2}}$-$\overrightarrow{{p}_{1}}$),求实数k的值;
(2)求$\overrightarrow{{p}_{1}}$在$\overrightarrow{{p}_{2}}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)定义域为(0,+∞)且满足f(x1)+f(x2)=f(x1x2),且x>1时,f(x)<0,若不等式f($\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$)≤f($\sqrt{{x}_{1}{x}_{2}}$)+f(a)恒成立,则a∈∈(-∞,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求f(x)=-2x2+ax+1在x∈[-1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若O在△ABC的内部,且满足$\overrightarrow{AO}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$,求△AOC与△ABC的面积之比为1:3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)对任意实数x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时f(x)<0,f(1)=-2,试问在-3≤x≤3时,f(x)是否有最值?若有,求出其最值,若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法中正确的有(  )个
①算法只能用图形的形式来描述;
②同一问题可以有不同的算法;
③一个算法可以无止境的运算下去;
④算法要求是一步步执行,每一步都能得到唯一结果;
⑤条件结构中的两条路径可以同时执行.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一条线段所在直线的斜率为0,它的两个端点的坐标分别为(5,a)、(b,1),且被直线x-2y=0所平分,则a、b的值为(  )
A.a=1,b=-1B.a=1,b=2C.a=1,b=-5D.a=1,b=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:函数f(x)=$\sqrt{x}$-$\frac{1}{\sqrt{x}}$与函数g(x)=x的图象不相交.

查看答案和解析>>

同步练习册答案