精英家教网 > 高中数学 > 题目详情
15.1998年12月19日,太原卫星发射中心为摩托罗拉公司(美国)发射了“铱星”系统通信卫星,卫星运行的轨道是椭圆,F1、F2是其焦点,地球中心为焦点F1,设地球半径为m,已知椭圆轨道的近地点A(离地面最近的点)距地面$\frac{m}{3}$,远地点B(离地面最远的点)距地面3m,并且F1、A、B在同一直线上,求卫星运行的轨道方程.

分析 如图所示,建立直角坐标系.设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).由题意可得:$\left\{\begin{array}{l}{m+\frac{m}{3}=a-c}\\{m+3m=a+c}\end{array}\right.$,b2=a2-c2.解出即可得出.

解答 解:如图所示,建立直角坐标系.
设椭圆的标准方程为:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
由题意可得:$\left\{\begin{array}{l}{m+\frac{m}{3}=a-c}\\{m+3m=a+c}\end{array}\right.$,
解得a=$\frac{8m}{3}$,c=$\frac{4m}{3}$,
∴b2=a2-c2=$\frac{48{m}^{2}}{9}$.
∴卫星运行的轨道方程为:$\frac{9{x}^{2}}{64{m}^{2}}$+$\frac{9{y}^{2}}{48{m}^{2}}$=1.

点评 本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$且$({\overrightarrow a+\overrightarrow b})⊥\overrightarrow b$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{2}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{9}$C.$\frac{1}{6}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知方程x+$\frac{{e}^{2}}{x}$+m=0有大于0的实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a,b,c为正实数,且a+b+c=1,证明:$\frac{1}{ab+2{c}^{2}+2c}$+$\frac{1}{bc+2{a}^{2}+2a}$+$\frac{1}{ca+2{b}^{2}+2b}$≥$\frac{1}{ab+bc+ca}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),A、B是其长轴的两个端点.
(1)过一个焦点F作垂直于长轴的弦PP′,求证:不论a、b如何变化,∠APB≠120°.
(2)如果椭圆上存在一个点Q,使∠AQB=120°,求C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(1-k)x+$\frac{m}{x}$+2,其中k,m∈R,且m≠0.
(1)求函数f(x)的定义域;
(2)k如何取值时,方程f(x)=0有解,并求出方程的解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,将矩形纸片ABCD(其中$AB=\sqrt{3}$,BC=1)沿对角线AC折起后,使得异面直线BC⊥AD,则此时异面直线AB和CD所成的角的余弦值是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-$\frac{1}{2}$lnx+$\frac{2}{x+1}$.
(1)求证:函数f(x)有且只有一个零点;
(2)对任意实数x∈[$\frac{1}{e}$,1](e为自然对数的底数),使得对任意t∈[$\frac{1}{2}$,2]恒有f(x)≥t3-t2-2at+2成立,求a的取值范围.

查看答案和解析>>

同步练习册答案