精英家教网 > 高中数学 > 题目详情
5.计算:
(1)${3}^{{log}_{3}2}$-2(log34)(log827)-$\frac{1}{3}$log68+2log${\;}_{\frac{1}{6}}$ $\sqrt{3}$;
(2)0.0081${\;}^{\frac{1}{4}}$-($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+$\sqrt{3}$•$\root{3}{\frac{3}{2}}$•$\root{6}{12}$.

分析 (1)直接利用对数的运算法则化简求解即可.
(2)利用有理指数幂的运算法则化简求解即可.

解答 解:(1)${3}^{{log}_{3}2}$-2(log34)(log827)-$\frac{1}{3}$log68+2log${\;}_{\frac{1}{6}}$ $\sqrt{3}$
=2-4log32log23-log62-log63
=2-4-1
=-5.
(2)0.0081${\;}^{\frac{1}{4}}$-($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$+$\sqrt{3}$•$\root{3}{\frac{3}{2}}$•$\root{6}{12}$
=0.3-$(\frac{3}{2})^{-2}$+${3}^{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}•{2}^{-\frac{1}{3}+\frac{1}{3}}$
=0.3+3
=3.3.

点评 本题考查指数与对数的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.若函数f(x)=ax(a>0,且a≠1)在[1,2]上的最大值比最小值大$\frac{a}{4}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}的前n项和为Sn,an+1=$\frac{{a}_{n}+\sqrt{3}}{1-\sqrt{3}{a}_{n}}$(n∈N*)关于下列命题:
①若a1=$\sqrt{3}$,则a3=0;
②对任意的a1(a1≠$\frac{\sqrt{3}}{3}$),均有an+3=an(n∈N*
③若a1=tanα,a2=tanβ,a3=tanγ,α、β、γ∈(0,2π),则α、β、γ成等差数列;
④当$\frac{\sqrt{3}}{3}$<a1<$\sqrt{3}$时,S3n<0
其中正确的命题有(  )
A.1 个B.2 个C.3 个D.4 个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|y=1n(4x-x2)},集合B={y|y=a•3x-9x,a∈R}.
(1)若实数a=2,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=ln$\frac{1}{2}$,b=3lg2,c=2${\;}^{-\frac{1}{2}}$,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求和并作图表示:
(1)30°+90°;  
(2)90°+(-60°);
(3)60°-180°;
(4)-60°+270°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)是定义在R上的偶函数,若函数g(x)是奇函数,且g(x)=f(x-1),g(3)=2008,则f(2012)=-2008.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+m|,g(x)=|x-2m|.
(1)若不等式f(1)+g(1)>5成立,求实数m的取值范围;
(2)求函数f(x+m)+g($\frac{2}{x}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:2lg$\sqrt{2}$+lg5+log34•log23.

查看答案和解析>>

同步练习册答案