【题目】数列: 满足: .记的前项和为,并规定.定义集合, , .
(Ⅰ)对数列: , , , , ,求集合;
(Ⅱ)若集合, ,证明: ;
(Ⅲ)给定正整数.对所有满足的数列,求集合的元素个数的最小值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P一ABCD中,平面PAB⊥平面ABCD, AB⊥BC, AD//BC, AD=3,PA=BC=2AB=2,
PB=.
(Ⅰ)求证:BC⊥PB;
(Ⅱ)求二面角P一CD一A的余弦值;
(Ⅲ)若点E在棱PA上,且BE//平面PCD,求线段BE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体的棱长为2,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是______(写出所有正确命题的编号).
①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为五边形;⑤当时,S的面积为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合是集合 的一个含有个元素的子集.
(Ⅰ)当时,
设
(i)写出方程的解;
(ii)若方程至少有三组不同的解,写出的所有可能取值.
(Ⅱ)证明:对任意一个,存在正整数使得方程 至少有三组不同的解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于项数为()的有穷正整数数列,记(),即为中的最大值,称数列为数列的“创新数列”.比如的“创新数列”为.
(1)若数列的“创新数列”为1,2,3,4,4,写出所有可能的数列;
(2)设数列为数列的“创新数列”,满足(),求证: ();
(3)设数列为数列的“创新数列”,数列中的项互不相等且所有项的和等于所有项的积,求出所有的数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥D-ABC中,底面ABC,为正三角形,若,,则三棱锥D-ABC与三棱锥E-ABC的公共部分构成的几何体的外接球的体积为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com