精英家教网 > 高中数学 > 题目详情

已知f(x)=|lgx|,且0<a<b<c,若?f(b)<f(a)<f(c),则下列一定成立的是


  1. A.
    a<1,b<1,且c>1
  2. B.
    0<a<1,b>1且c>1
  3. C.
    b>1,c>1
  4. D.
    c>1且数学公式<a<1,a<b<数学公式
D
分析:由绝对值得意义,去绝对值进行讨论得出ab的关系即可
解答:∵f(x)=|lgx|,0<a<b<c,f(b)<f(a)<f(c),
若0<a<b<c<1,则f(a)>f(b)>f(c),与题意不符;
若1<a<b<c,应有f(a)<f(b)<f(c),与题意不符;
∴0<a<1,>1,c>1.b与1的大小关系不定,可排除A、B、C.
∴f(b)<f(a)<f(c)?|lgb|<|lga|<lgc,
∵|lgb|<|lga|,
∴lg2b<lg2a,即(lga+lab)•(lgb-lga)<0,lgab•lg<0,由>1得lg>0,
∴lgab<0,
∴0<ab<1,
∴a<b<
又|lga|<lgc,
而|lga|=-lga=lg
∴0<lg<lgc,
<a<1,②又c>1,
由①②可得D正确.
故选D.
点评:本题考查绝对值得意义、对数的取值和运算、比较大小等知识,考查对数的性质与转化、运算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=lg(1+x)+alg(1-x)是奇函数.
(1)求f(x)的定义域
(2)求a的值;
(3)当k>0时,解关于x的不等式f(x)≥lg
1+xk

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(-x2+8x-7)在(m,m+1)上是增函数,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)已知f(x)=lg(x+1)
(1)若0<f(1-2x)-f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|lg(x-2)|,当a<b时,f(a)=f(b),则a+b的取值范围为
(6,+∞)
(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lg(-x2+8x-7)在(m,m+1)上是增函数,则m取值范围是(  )

查看答案和解析>>

同步练习册答案