精英家教网 > 高中数学 > 题目详情

如图,在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.

(1)y=0或;(2)0≤a≤

解析试题分析:(1)先求出圆心坐标,可得圆的方程,再设出切线方程,利用点到直线的距离公式,即可求得切线方程;(2)设出点C,M的坐标,利用MA=2MO,寻找坐标之间的关系,进一步将问题转化为圆与圆的位置关系,即可得出结论.
解:(1)联立:,得圆心为:C(3,2).
设切线为:,d=,得:
故所求切线为:.                    5′
(2)设点M(x,y),由,知:
化简得:,即:点M的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D.
又因为点在圆上,故圆C圆D的关系为相交或相切.
故:1≤|CD|≤3,其中
解之得:0≤a≤.                             5′
考点:直线和圆的方程的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆C过原点且与相切,且圆心C在直线上.
(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且, 求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数
(1)求直线y=ax+b不经过第四象限的概率:
(2)求直线y=ax+b与圆有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆()
(1)当时,求经过原点且与圆相切的直线的方程;
(2)若圆恰在圆的内部,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:圆C过点A(6,0),B(1,5)且圆心在直线上,求圆C的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点.
(1)求曲线的方程;
(2)试探究的比值能否为一个常数?若能,求出这个常数,若不能,请说明理由;
(3)记的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C经过点A(-2,0),B(0,2),且圆心C在直线yx上,又直线lykx+1与圆C相交于PQ两点.
(1)求圆C的方程;
(2)若·=-2,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,与圆相切于,不过圆心的割线与直径相交于点.已知∠=,则圆的半径等于   

查看答案和解析>>

同步练习册答案