精英家教网 > 高中数学 > 题目详情

【题目】已知圆O1与圆Ox2+y2rr0)交于点P(﹣1y0.且关于直线x+y1对称.

1)求圆O及圆O1的方程:

2)在第一象限内.O上是否存在点A,过点A作直线l与抛物线y24x交于点B,与x轴交于点D,且以点D为圆心的圆过点OAB?若存在.求出点A的坐标;若不存在.说明理由.

【答案】1)圆O1的方程为(x12+y125;圆O的方程为x2+y252)不存在,详见解析

【解析】

1)由题意可得在直线上,可得的坐标,进而得到圆的方程;设关于直线的对称点为,由两直线垂直的条件和中点坐标公式可得,进而得到圆的方程;

2)假设在第一象限内.圆上存在点,且以点为圆心的圆过点,则的中点,设出的方程,分别联立圆的方程和抛物线的方程,求得的坐标,再由中点坐标公式,解方程即可判断存在性.

1)圆O1与圆Ox2+y2rr0)交于点P(﹣1y0.且关于直线x+y1对称,

可得P在直线x+y1上,即有﹣1+y01,即y02P(﹣12),

可得r1+45,则圆O的方程为x2+y25

设(00)关于直线x+y1的对称点为(ab),可得aba+b2

解得ab1,可得圆O1的方程为(x12+y125

2)假设在第一象限内.O上存在点A,且以点D为圆心的圆过点OAB

OAOBDAB的中点,由题意可得直线OA的斜率存在且大于0,设OA的方程为ykxk0),

OByx

解得x,即有Ak),

可得x4k2,即有B4k2,﹣4k),

DAB的中点,可得k4k0

化为16k2+110,方程无实数解,

则符合条件的k不存在,所以满足条件的A不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的图象在处的切线方程;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx是定义在(﹣11)上的奇函数,且f

1)确定函数的解析式;

2)用定义法判断函数的单调性;

3)解不等式;ft1+ft)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.

1)求的值及函数的极值;

2)证明:当时,

3)证明:对任意给定的正数,总存在,使得当时,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

1)讨论的单调性;

2的导函数,若存在两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,AD//平面BCC1B1ADDB.求证:

1BC//平面ADD1A1

2)平面BCC1B1⊥平面BDD1B1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左右顶点,点为椭圆上一点,点关于轴的对称点为,且.

1)若椭圆经过圆的圆心,求椭圆的方程;

2)在(1)的条件下,若过点的直线与椭圆相交于不同的两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费元;重量超过的包裹,除收费元之外,超过的部分,每超出(不足,按计算)需再收元.该公司将最近承揽的件包裹的重量统计如下:

包裹重量(单位:

包裹件数

公司对近天,每天揽件数量统计如下表:

包裹件数范围

包裹件数

(近似处理)

天数

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来天内恰有天揽件数在之间的概率;

(2)(i)估计该公司对每件包裹收取的快递费的平均值;

(ii)公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员人,每人每天揽件不超过件,工资元.公司正在考虑是否将前台工作人员裁减人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)

(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数近似为样本方差

(ⅰ)利用该正态分布,求

(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求

附:.若,则

查看答案和解析>>

同步练习册答案