精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)讨论的单调性;
(Ⅱ)试确定的值,使不等式恒成立.

(Ⅰ)当时,上递增;当时,单调递增;当时,单调递减;(Ⅱ).

解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调区间、最值等数学知识和方法,突出考查分类讨论思想和综合分析问题和解决问题的能力.第一问是利用导数研究函数的单调性,但是题中有参数,需对参数进行讨论,可以转化为含参一元一次不等式的解法;第二问是恒成立问题,可以转化为求最值问题,研究一下最大值是不是0,这一问中也需要对进行讨论.
试题解析:(Ⅰ)
上递增;
,当时,单调递增;
时,单调递减.                  5分
(Ⅱ)由(Ⅰ)知,若上递增,
,故不恒成立.
,当时,递减,,不合题意.
,当时,递增,,不合题意.
上递增,在上递减,
符合题意,
综上.             10分
考点:1.利用导数求函数的单调性;2.利用导数求函数最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)若对一切恒成立,求的最大值;
(2)设,且是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数.
(1)若,求函数的极值,
(2)是否存在实数,使得成立?若存在,求出实数的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数为奇函数,其图象在点处的切线与直线垂直,导函数 的最小值为
(1)求的值;
(2)求函数的单调递增区间,并求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若是增函数,求b的取值范围;
(Ⅱ)若时取得极值,且时,恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)求曲线在点处的切线方程;  (2)当时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,函数
(Ⅰ)求的单调区间与极值;
(Ⅱ)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若的极值点,求实数的值;
(2)若上为增函数,求实数的取值范围;
(3)当时,方程有实根,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为函数图象上一点,O为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数m的取值范围;
(2)当 时,不等式恒成立,求实数的取值范围;
(3)求证:

查看答案和解析>>

同步练习册答案