精英家教网 > 高中数学 > 题目详情

奇函数f(x)在(0,+∞)上是减函数,且f(-1)=0,则不等式数学公式>0的解集为


  1. A.
    (-∞,-1)∪(1,+∞)
  2. B.
    (-∞,-1)∪(0,1)
  3. C.
    (-1,0)∪(1,+∞)
  4. D.
    (-1,0)∪(0,1)
D
分析:由奇函数f(x)在(0,+∞)上是减函数,可以得到函数在(-∞,0)上也是减函数,进一步将不定时等价转化即可解得.
解答:奇函数f(x)在(0,+∞)上是减函数,则在(-∞,0)上也是减函数,所以问题等价于,解得0<x<1或-1<x<0,
故选D.
点评:本题主要考查解不等式,考查函数的奇偶性与单调性的结合,正确理解运用结论是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(-∞,0)∪(0,+∞)上的奇函数f(x)在(0,+∞)上为增函数,当x>0时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]<0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义{x∈R|x≠0}的奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式
f(x)-f(-x)
x-1
<0
的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式(x-1)f(x-1)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1};
④在极坐标系中,圆ρ=-4cosθ的圆心的直角坐标是(-2,0).
其中正确的是
②,④
②,④

查看答案和解析>>

科目:高中数学 来源: 题型:

设奇函数f(x)在(0,+∞)上为增函数,且f(-2)=0则不等式
f(-x)x
>0
的解集为
(-2,0)∪(0,2)
(-2,0)∪(0,2)

查看答案和解析>>

同步练习册答案