精英家教网 > 高中数学 > 题目详情
已知a、b、c为正数,n是正整数,且f(n)=lg
an+bn+cn3
,求证:2f(n)≤f(2n).
分析:由基本不等式的推论a2+b2≥2ab,可得(an+bn+cn2=a2n+b2n+c2n+2an•bn+2an•cn+2bn•cn≤3(a2n+b2n+c2n),进而根据对数的运算性质及f(n)=lg
an+bn+cn
3
,可证得结论.
解答:证明:∵a2+b2≥2ab
∴(an+bn+cn2
=a2n+b2n+c2n+2an•bn+2an•cn+2bn•cn
≤3(a2n+b2n+c2n
∴lg(an+bn+cn2≤lg[3(a2n+b2n+c2n)]
∴lg(an+bn+cn2≤lg(a2n+b2n+c2n)+lg3
∴2lg(an+bn+cn)≤lg(a2n+b2n+c2n)+lg3
∴2[lg(an+bn+cn)-lg3]≤lg(a2n+b2n+c2n)-lg3
∴2f(n)≤f(2n)
点评:本题考查的知识点是对数函数的单调性,其中根据基本不等式的推论得到(an+bn+cn2=a2n+b2n+c2n+2an•bn+2an•cn+2bn•cn≤3(a2n+b2n+c2n),是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c为正数,关于x的一元二次方程ax2+bx+c=0有两个相等的实数根.则方程(a+1)x2+(b+2)x+c+1=0的实数根的个数是(  )
A、0或1B、1或2C、0或2D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为正数,则(
a
b
+
b
c
+
c
a
)(
b
a
+
c
b
+
a
c
)有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为正数,且两两不等,求证:2(a3+b3+c3)>a2(b+c)+b2(a+c)+c2(a+b).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州模拟)[选修4-5:不等式选讲]
已知a,b,c为正数,且满足acos2θ+bsin2θ<c,求证:
a
cos2θ+
b
sin2θ<
c

查看答案和解析>>

同步练习册答案