分析:由基本不等式的推论a
2+b
2≥2ab,可得(a
n+b
n+c
n)
2=a
2n+b
2n+c
2n+2a
n•b
n+2a
n•c
n+2b
n•c
n≤3(a
2n+b
2n+c
2n),进而根据对数的运算性质及
f(n)=lg,可证得结论.
解答:证明:∵a2+b2≥2ab
∴(an+bn+cn)2
=a2n+b2n+c2n+2an•bn+2an•cn+2bn•cn
≤3(a2n+b2n+c2n)
∴lg(an+bn+cn)2≤lg[3(a2n+b2n+c2n)]
∴lg(an+bn+cn)2≤lg(a2n+b2n+c2n)+lg3
∴2lg(an+bn+cn)≤lg(a2n+b2n+c2n)+lg3
∴2[lg(an+bn+cn)-lg3]≤lg(a2n+b2n+c2n)-lg3
∴2f(n)≤f(2n)
点评:本题考查的知识点是对数函数的单调性,其中根据基本不等式的推论得到(an+bn+cn)2=a2n+b2n+c2n+2an•bn+2an•cn+2bn•cn≤3(a2n+b2n+c2n),是解答本题的关键.