精英家教网 > 高中数学 > 题目详情

 设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q。

(Ⅰ)若直线m与x轴正半轴的交点为T,且,求点T的坐标;

(Ⅱ)求直线A1P与直线A2Q的交点M的轨迹E的方程;

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(Ⅰ)由题,得,设

  …………①

在双曲线上,则   …………②

联立①、②,解得    

由题意,

∴点T的坐标为(2,0)

(Ⅱ)设直线A1P与直线A2Q的交点M的坐标为(x,y)

由A1、P、M三点共线,得

   …………③

由A2、Q、M三点共线,得

   …………④

联立③、④,解得

在双曲线上,

∴轨迹E的方程为

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点P、Q。

   (Ⅰ)若直线m与x轴正半轴的交点为T,且,求点T的坐标;

   (Ⅱ)求直线A1P与直线A2Q的交点M的轨迹E的方程;

   (Ⅲ)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若(T为(Ⅰ)中的点)的取值范围。

查看答案和解析>>

科目:高中数学 来源:2014届重庆市高二上学期期中考试理科数学试卷(解析版) 题型:解答题

设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点

(1)若直线m与x轴正半轴的交点为T,且,求点T的坐标;

(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;

(3)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若(T为(1)中的点)的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C:=1的左、右焦点分别为F1、F2,点P是双曲线位于第一象限内的一个点,且满足·=0,则△PF1F2的内切圆的方程为

A.(x-2)2+(y-1)2=1                             B.(x-3)2+(y-2)2=4

C.(x-3)2+(y-1)2=1                             D.(x-4)2+(y-2)2=4

查看答案和解析>>

科目:高中数学 来源:2011年陕西省西安中学高考数学第十三次模拟试卷(理科)(解析版) 题型:选择题

设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线l与双曲线C交于不同的两点P、Q.若直线l与x轴正半轴的交点为M,且,则点M的坐标为( )
A.(,0)
B.(2,0)
C.(,0)
D.(3,0)

查看答案和解析>>

同步练习册答案