【题目】已知函数(,常数).
(1)当时,讨论函数的奇偶性并说明理由;
(2)若函数在区间上单调,求正数的取值范围;
(3)若不等式对任意恒成立,求实数的取值范围.
【答案】(1)函数是偶函数,详见解析
(2)正数的取值范围为
(3)实数的取值范围为
【解析】
(1)利用定义法求的单调性;
(2)根据复合函数单调性性质,原题可以转变为在区间上单调,从而研究的单调性,即可得出结论;
(3)当时,不等式恒成立,当时,将题设不等式转化为对任意恒成立,然后分别确定的最大值和最小值即可得出结论.
(1)当时,,是偶函数,理由如下:
的定义域为,而,
因此当时是偶函数;
(2)令(),
因为在区间上单调,且在定义域上单调递增,
所以在区间上单调,
又,
其单调递减区间为,
所以,即;
(3)不等式对任意恒成立,
即对任意恒成立,
①当时,不等式恒成立;
②当时,则有对任意恒成立,
设,则其在上单调递增,故,
设,则其在上单调递减,故,
所以;
综上所述,实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜好体育运动 | 不喜好体育运动 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.
(1)请将上面的列联表补充完整;
(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明理由.
附:
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题14分)设, .
(1)当时,求曲线在处的切线方程;
(2)如果存在,使得成立,
求满足上述条件的最大整数;
(3)如果对任意的,都有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若点P是直线2x+y+10=0上的动点,直线PA、PB分别与圆x2+y2=4相切于A、B两点,则四边形PAOB(O为坐标原点)面积的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经榫卯起来,如图,若正四棱柱的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为( )(容器壁的厚度忽略不计)
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2x的焦点为F,过焦点F的直线交抛物线于A,B两点,过A,B作准线的垂线交准线与P,Q两点.R是PQ的中点.
(1)证明:以PQ为直径的圆恒过定点F.
(2)证明:AR∥FQ.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com