精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(2x+φ)(0<φ<π)的部分图象,如图所示,则φ=(  )
A、
π
6
B、
π
3
C、
π
2
D、
3
考点:正弦函数的图象
专题:计算题,三角函数的图像与性质
分析:由题意1=sin(2×
π
12
+φ),可解得:φ+
π
6
=2kπ+
π
2
,k∈Z,根据0<φ<π,即可解得φ的值.
解答: 解:∵由图象可知,点(
π
12
,1)在函数f(x)=sin(2x+φ)(0<φ<π)的图象上,
∴1=sin(2×
π
12
+φ),
∴可解得:φ+
π
6
=2kπ+
π
2
,k∈Z,
∵0<φ<π,
∴φ=
π
3

故选:B.
点评:本题主要考查了正弦函数的图象和性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设z=x+y,其中实数x,y满足
x+2y≥0
x-y≤0
y≤6
,则z的最大值为(  )
A、12B、6C、0D、-6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1的焦距为10,点P(1,2)在C的渐近线上,则C的方程为(  )
A、
x2
80
-
y2
20
=1
B、
x2
20
-
y2
80
=1
C、
x2
5
-
y2
20
=1
D、
x2
20
-
y2
5
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(2,3),PA,PB是圆x2+y2-2x-2y+1=0的切线,A,B是切点,那么直线AB的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知点A(0,1),B点在直线y=-1上,M点满
MB
OA
MA
AB
=
MB
BA
,M点的轨迹曲线C
(1)求曲线C的方程;
(2)斜率为1的直线l过原点O,求l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲有三本不同的书,乙去借阅,并且至少借1本,则不同借法的总数为
 
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

若P(x,y)在区域
x-3y+3≥0
2x+y≤4
y≤2x
y≥0
内,点M(3,5),则
OM
MP
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x≥1
y≤2
x-y≤0
,记目标函数z=x+y的最小值为t,已知实数a、b满足a+b=t,则3a+3b的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程:x2+y2-2x-4y+m=0.
(1)求m的取值范围;
(2)当m=4时,求直线l:x+2y-4=0被圆C所截得的弦MN的长.

查看答案和解析>>

同步练习册答案