精英家教网 > 高中数学 > 题目详情
(2008•黄冈模拟)在四棱锥P-ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(1)求证:平面PAC⊥平面PBD;
(2)求二面角B-PC-D的余弦值.
分析:(1)由已知中底面ABCD是a的正方形,PA⊥平面ABCD,结合线面垂直的性质和正方形的性质可得PA⊥BD,AC⊥BD,再由线面垂直的判定定理可得BD⊥平面PAC,最后由面面垂直的判定定理得到平面PAC⊥平面PBD;
(2)在平面BCP内作BN⊥PC垂足为N,连DN,可得∠BND为二面角B-PC-D的平面角,解△BND,即可得到二面角B-PC-D的余弦值.
解答:证明:(1)∵PA⊥平面ABCD∴PA⊥BD
∵ABCD为正方形∴AC⊥BD
∴BD⊥平面PAC
又BD在平面BPD内,
∴平面PAC⊥平面BPD      (6分)

解:(2)在平面BCP内作BN⊥PC垂足为N,连DN,
∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;
∴∠BND为二面角B-PC-D的平面角,
在△BND中,BN=DN=
5
6
a
,BD=
2
a

∴cos∠BND=
5
6
a2+
5
6
a2-2a2
5
3
a2
=-
1
5
点评:本题考查的知识点是二面角的平面角及求法,平面与平面垂直的判定,其中(1)的关键是熟练掌握线线垂直,线面垂直及面面垂直之间的相互转化,(2)的关键是证得∠BND为二面角B-PC-D的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•黄冈模拟)已知等式(1+x-x23•(1-2x24=a0+a1x+a2x2+…+a14x14成立,则a1+a2+a3+…+a13+a14的值等于
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)不等式|x|•(1-3x)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)已知直线x+y-1=0与椭圆
x2
a2
+
y2
b2
=1
(a>b>0)相交于A、B两点,M是线段AB上的一点,
AM
=-
BM
,且点M在直线l:y=
1
2
x
上,
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)若全集U=R,集合A={x|1-x<0},B={x|x2-2x≤0},则A∩B=(  )

查看答案和解析>>

同步练习册答案