精英家教网 > 高中数学 > 题目详情

已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。
(1)求双曲线的方程;
(2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。

(1);(2)

解析试题分析:(1)有椭圆方程中读出其长轴长,焦距长,根据题意得出双曲线的长轴长,和焦距长,即可求出双曲线方程。(2)因为直线l与两曲线均有两个不同交点,故联立方程后整理出的一元二次方程均有两根,即判别式均大于0,再根据向量数量积公式列出关于K 的不等式,三个不等式取交集。
试题解析:(1)设双曲线的方程为,由椭圆的方程知,其长轴长为4,焦距长为,则由题意知双曲线,所以,故的方程为
(2)将代入,整理得,由直线与椭圆恒有两个不同的交点得
代入,整理得,由直线与双曲线恒有两个不同的交点得,解得


解此不等式得
       ③
由①、②、③得
故k的取值范围为
考点:圆锥曲线方程基础知识,直线与圆锥曲线的位置关系,向量数量积公式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知过点的椭圆的右焦点为,过焦点且与轴不重合的直线与椭圆交于两点,点关于坐标原点的对称点为,直线分别交椭圆的右准线两点.

(1)求椭圆的标准方程;
(2)若点的坐标为,试求直线的方程;
(3)记两点的纵坐标分别为,试问是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)点P为圆上一个动点,M为点P在y轴上的投影,动点Q满足
(1)求动点Q的轨迹C的方程;
(2)一条直线l过点,交曲线C于A、B两点,且A、B同在以点D(0,1)为圆心的圆上,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中是过抛物线焦点的两条弦,且其焦点,点轴上一点,记,其中为锐角.

(1)求抛物线方程;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在抛物线y2=4x上恒有两点关于直线l:y=kx+3对称,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点为F,过F的直线交抛物线于M、N两点,其准线与x轴交于K点.

(1)求证:KF平分∠MKN;
(2)O为坐标原点,直线MO、NO分别交准线于点P、Q,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(Ⅰ)试问在轴上是否存在不同于点的一点,使得轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(Ⅱ)若的面积为,求向量的夹角;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线上任意一点到直线的距离是它到点距离的倍;曲线是以原点为顶点,为焦点的抛物线.
(Ⅰ)求,的方程;
(Ⅱ)过作两条互相垂直的直线,其中相交于点,相交于点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点.(12分)

(1)求椭圆的方程;(3分)
(2)求的最小值,并求此时圆的方程;(4分)
(3)设点是椭圆上异于,的任意一点,且直线分别与轴交于点为坐标原点,求证:为定值.(5分)

查看答案和解析>>

同步练习册答案