精英家教网 > 高中数学 > 题目详情

若函数f(x)=x2+数学公式(a∈R),则下列结论正确的是


  1. A.
    ?a∈R,f(x)在(0,+∞)上是增函数
  2. B.
    ?a∈R,f(x)在(0,+∞)上是减函数
  3. C.
    ?a∈R,f(x)是偶函数
  4. D.
    ?a∈R,f(x)是奇函数
C
分析:利用导数考查函数f(x)=x2+(a∈R)的单调性,可对A、B选项进行判断;考查函数f(x)=x2+(a∈R)的奇偶性,可对C、D选项的对错进行判断.
解答:∵f′(x)=2x-
故只有当a≤0时,f(x)在(0,+∞)上才是增函数,
因此A、B不对,
当a=0时,f(x)=x2是偶函数,因此C对,D不对.
答案:C
点评:本题主要考查了利用导数进行函数奇偶性的判断以及函数单调性的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x2+ax-1在x∈[1,3]是单调递减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|x2-4x|-a的零点个数为3,则a=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
-x2+2x+3
,则f(x)的单调递增区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2•lga-6x+2与X轴有且只有一个公共点,那么实数a的取值范围是
a=1或a=10
9
2
a=1或a=10
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)下列命题:
①若函数f(x)=x2-2x+3,x∈[-2,0]的最小值为2;
②线性回归方程对应的直线
?
y
=
?
b
x+
?
a
至少经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个点;
③命题p:?x∈R,使得x2+x+1<0则¬p:?x∈R,均有x2+x+1≥0;
④若x1,x2,…,x10的平均数为a,方差为b,则x1+5,x2+5,…,x10+5的平均数为a+5,方差为b+25.
其中,错误命题的个数为(  )

查看答案和解析>>

同步练习册答案