精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点F(c,0)的直线交双曲线于A,B两点,交y轴于点P,则有
|PA|
|AF|
+
|PB|
|BF|
为定值
2ac
b2
,类比双曲线这一结论,在椭圆
x2
a2
+
y2
b2
=1
(a>b>c)中,
|PA|
|AF|
+
|PB|
|BF|
也为定值,则这个定值为
 
考点:类比推理
专题:计算题,推理和证明
分析:过A,B作x轴垂线,垂足为E,J,可得
PA
AF
=
EO
EF
=
xA
xA-c
PB
FB
=
xB
xB-c
,设AB:y=k(x-c),代入椭圆方程,利用韦达定理,即可得出结论.
解答: 解:过A,B作x轴垂线,垂足为E,J,则
PA
AF
=
EO
EF
=
xA
xA-c
PB
FB
=
xB
xB-c

设AB:y=k(x-c),代入椭圆方程可得(b2+a2k2)x2-2a2k2cx+(a2k2c2-a2b2)=0,
∴xA+xB=
2a2k2c
b2+a2k2
,xAxB=
a2k2c2-a2b2
b2+a2k2

|PA|
|AF|
+
|PB|
|BF|
=
xA
xA-c
+
xB
xB-c
=
2a2
b2

故答案为:
2a2
b2
点评:本题考查直线与椭圆是位置关系,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U={1,2,3,4},A={2,4},则∁UA=(  )
A、∅B、{1}
C、{2,4}D、{1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,若在双曲线的右支上存在点P,满足|PF2|=|F1F2|,且原点O到直线PF1的距离等于双曲线的实半轴长,则该双曲线的渐近线方程为(  )
A、4x±3y=0
B、3x±5y=0
C、3x±4y=0
D、5x±3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C经过点(2,2),且与
y2
4
-x2=1具有相同渐进线,则双曲线C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等轴双曲线C的中心在原点,焦点在x轴上,过抛物线y2=16x的焦点F且与x轴垂直的直线交双曲线C于A、B两点,若|AB|=4
3
,则C的实轴长为(  )
A、4
B、8
C、
2
D、2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|2x-
3
4
|+|2x+
5
4
|,设m,n∈R+,且m+n=1.
(Ⅰ)求不等式f(x)≤
5
2
的解集;
(Ⅱ)求证:
2m+1
+
2n+1
≤2
f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

化简求值:(1)sin50°(1+
3
tan10°);
(2)tan10°+tan50°+
3
tan10°tan50°.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sin(2x+
π
3
).
(1)求x∈[-
π
2
,0]时,f(x)的解析式;
(2)求函数f(x)的单增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校就一问题进行内部问卷调查,已知该学校有男学生90人,女学生108人,教师36人.用分层抽样的方法从中抽取13人进行问卷调查.问卷调查的问题设置为“同意”,“不同意”两种,且每人都做一种选择.下面表格中提供了被调查人答卷情况的部分信息. 
 同意不同意合计
教师1  
女生 4 
男生 2 
(Ⅰ)请完成此统计表;
(Ⅱ)根据此次调查,估计全校对这一问题持“同意”意见的人数;
(Ⅲ)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.

查看答案和解析>>

同步练习册答案