精英家教网 > 高中数学 > 题目详情

正方形ADEF与梯形ABCD所在平面互相垂直,,点M在线段EC上且不与E,C重合.

(Ⅰ)当点M是EC中点时,求证:平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M BDE的体积.

(1)证明过程详见解析;(2).

解析试题分析:本题考查用向量法证明线面平行以及求二面角、三棱锥的体积等基础知识,考查学生的空间想象能力、计算能力以及推理论证能力.第一问,建立空间直角坐标系,表示出,面的法向量,证明出,即可证;第二问,用一个变量表示点坐标,求平面的法向量,面的法向量, 据已知得,求得,据点,求得,从而计算.
试题解析:(Ⅰ)以分别为轴建立空间直角坐标系

的一个法向量
.即.           4分
(Ⅱ)依题意设,设面的法向量

,则,面的法向量
,解得           10分
为EC的中点,到面的距离
                      12分
考点:1.空间向量法证明线面平行;2.空间向量法表示二面角.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:∥平面
(2)求证:AC⊥BC1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图四棱锥中,底面是平行四边形,平面,垂足为上且的中点,四面体的体积为.

(1)求二面角的正切值;
(2)求直线到平面所成角的正弦值;
(3)在棱上是否存在一点,使异面直线所成的角为,若存在,确定点的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图长方体中,底面是正方形,的中点,是棱上任意一点.

⑴求证:
⑵如果,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,,分别为的中点.

(1)求二面角的余弦值;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知矩形,点的中点,将△沿折起到△的位置,使二面角是直二面角.


(1)证明:⊥面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是等边三角形,,将沿折叠到的位置,使得

(1)求证:
(2)若分别是,的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,为的中点.

(1)求证:∥平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠BAD=60°,对角线AC与BD相交于点O,PO为四棱锥P﹣ABCD的高,且,E、F分别是BC、AP的中点.

(1)求证:EF∥平面PCD;
(2)求三棱锥F﹣PCD的体积.

查看答案和解析>>

同步练习册答案