精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,的中点.

(1)求证:

(2)求证:平面

(3)求直线与平面所成的角.

【答案】(1)证明见解析;(2)证明见解析;(3).

【解析】

1)由,可得. 结合利用线面垂直的判定定理可得平面,进而可得结果;(2)由三角形中位线定理可得,可证明四边形. 是平行四边形,可得,由线面平行的判定定理可得结果;(3)为原点,以的延长线,轴、轴、轴建立坐标系,先证明是平面的法向量,求出,利用空间向量夹角公式可得结果.

(1).

.

.

(2)取,连接.

分别是的中点,

四边形是平行四边形,

.

(3)以为原点,以的延长线,

轴、轴、轴建立坐标系,

平面.是面的法向量,

,

设直线与平面所成的角为

直线与平面所成的角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项等比数列的前n项和,满足,则的最小值为

A. B. 3 C. 4 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.

(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;

(2)已知这种产品的年利润zxy的关系为,根据(1)中的结果回答下列问题:

①当年宣传费为10万元时,年销售量及年利润的预报值是多少?

②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.

附:回归方程中的斜率和截距的最小二乘估计公式分别为

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)当a=1时,求函数的单调区间:

(Ⅱ)求函数的极值;

(Ⅲ)若函数有两个不同的零点,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其前n项和,则下列说法正确的个数是(

①数列是等差数列;②;③.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,底面是边长为4的等边三角形,侧棱垂直于底面,M是棱AC的中点.

(1)求证:平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数处的切线方程;

(Ⅱ)若对任意的恒成立,求的取值范围;

(Ⅲ)当时,设函数.证明:对于任意的,函数有且只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20194月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有(

A.150B.240C.300D.360

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】英语老师要求学生从星期一到星期四每天学习3个英语单词:每周五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同)

(1)英语老师随机抽了个单词进行检测,求至少有个是后两天学习过的单词的概率;

(2)某学生对后两天所学过的单词每个能默写对的概率为,对前两天所学过的单词每个能默写对的概率为,若老师从后三天所学单词中各抽取一个进行检测,求该学生能默写对的单词的个数的分布列和期望。

查看答案和解析>>

同步练习册答案