精英家教网 > 高中数学 > 题目详情
经过点A(-4,3)且与原点的距离等于5的直线方程是(  )
A、3x-4y+25=0
B、4x-3y-25=0
C、4x-3y+25=0
D、4x+3y+25=0
考点:点到直线的距离公式
专题:直线与圆
分析:设过点A(-4,0)的直线为y=k(x+4)-3,再由点到直线的距离公式能求出直线方程.
解答: 解:设过点A(-4,0)的直线为y=k(x+4)-3,
即kx-y+4k-3=0,
∵所求直线与原点的距离等于5,
|4k-3|
k2+1
=5,解得k=-
4
3

∴所求直线为y=-
4
3
(x+4)-3,即4x+3y+25=0.
当所求直线斜率不存在时,直线方程为x=-4,不成立,
故所求直线为4x+3y+25=0.
故选:D.
点评:本题考查直线方程的求法,是基础题,解题时要注意点到直线的距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)若α是第二象限角,sin(π-α)=
10
10
.求
2sin2
α
2
+8sin
α
2
cos
α
2
+8cos2
α
2
-5
2
sin(α-
π
4
)
 的值;
(2)已知函数f(x)=tan(2x+
π
4
),设α∈(0,
π
4
),若f(
α
2
)=2cos2α,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,底面ABCD是直角梯形,平面PAB⊥平面ABCD,R、S分别是棱AB、PC的中点,AD∥BC,AD⊥AB,PA⊥PB,AB=BC=2AD=2PA=2,
(Ⅰ)求证:平面PAD⊥平面PBC;
(Ⅱ)求证:RS∥平面PAD
(Ⅲ)若点Q在线段AB上,且CD⊥平面PDQ,求三棱锥Q-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(x,y)在△ABC所包围的区域内(包含边界),若B(3,
5
2
)是使得z=ax-y取得最大值的最优解,则实数a的取值范围为(  )
A、a≥-
1
2
B、a>0
C、a≤-
1
2
D、-
1
2
≤a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为定义域D上的单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的“正函数”,若f(x)=x2+k是(-∞,0)上的正函数,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

利用“五点法”换函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<
π
2
)的图象时,先列表(部分数据)如下:
ωx+φ0  π  2π
x 
π
3
 
6
 
3
 
11π
6
 
3
y 4 -2 
(1)根据表格提供的份额数据求函数f(x)的解析式以及单调递增区间;
(2)若当x∈[0,
6
]时,方程f(x)=m+1恰有两个不同的解,求实数m的取值范围,并求这两个解的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的首项为a,前n项和Sn满足Sn=a2-an+1(n∈N+).若实数x,y满足
x-y+1≥0
x+y≥0
x≤a
,则z=x+2y的最小值是(  )
A、5
B、1
C、-1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙、丁四位同学站成一排照相留念,则甲、乙相邻的概率为(  )
A、
1
3
B、
1
2
C、
2
3
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,当n≥2时,an-an-1=n+1,则a99=
 

查看答案和解析>>

同步练习册答案