精英家教网 > 高中数学 > 题目详情

【题目】已知函数φ(x)= ,a>0
(1)若函数f(x)=lnx+φ(x),在(1,2)上只有一个极值点,求a的取值范围;
(2)若g(x)=|lnx|+φ(x),且对任意x1 , x2∈(0,2],且x1≠x2 , 都有 <﹣1,求a的取值范围.

【答案】
(1)解: f(x)=lnx+φ(x)=lnx+ ,(x>0,a>0),

f′(x)=

当f′(1)f′(2)<0时,函数f(x)在区间(1,2)上只有一个极值点,

即为(1﹣ a)( a)<0,

解得:4<a<


(2)解:∵ <﹣1,

∴有 +1<0,

<0,

设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数.

当1≤x≤2时,h(x)=lnx+ +x,h′(x)= +1,

令h′(x)≤0,得:a≥ +(x+1)2=x2+3x+ +3对x∈[1,2]恒成立,

设m(x)=x2+3x+ +3,则m′(x)=2x+3﹣

∵1≤x≤2,∴m′(x)=2x+3﹣ >0,

∴m(x)在[1,2]上递增,则当x=2时,m(x)有最大值为

∴a≥

当0<x<1时,h(x)=﹣lnx+ +x,h′(x)=﹣ +1,

令h′(x)≤0,得:a≥﹣ +(x+1)2=x2+x﹣ ﹣1,

设t(x)=x2+x﹣ ﹣1,则t′(x)=2x+1+ >0,

∴t(x)在(0,1)上是增函数,

∴t(x)<t(1)=0,

∴a≥0


【解析】(1)求出函数的导数,得到f′(1)f′(2)<0,解出即可;(2)设h(x)=g(x)+x,依题意得出h(x)在(0,2]上是减函数.下面对x分类讨论:①当1≤x≤2时,②当0<x<1时,利用导数研究函数的单调性从及最值,即可求得求a的取值范围.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位: )进行了抽样调查,得到的频率分布直方图如图所示.已知身高在之间的男生人数比身高在之间的人数少1人.

(1)若身高在以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?

(2)从所抽取的样本中身高在的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)求曲线的普通方程和直线的倾斜角;

2)设点,直线和曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,则 ; ②若;③若,则; ④若,则,其中正确命题的序号是( )

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信红包是一款年轻人非常喜欢的手机应用.某网络运营商对甲、乙两个品牌各种型号的手机在相同环境下抢到红包的个数进行统计,得到如下数据:

品牌 型号

甲品牌(个)

4

3

8

6

12

乙品牌(个)

5

7

9

4

3

红包个数

手机品牌

优良

一般

合计

甲品牌(个)

乙品牌(个)

合计

(Ⅰ)如果抢到红包个数超过个的手机型号为“优良”,否则为“一般”,请完成上述表格,并据此判断是否有的把握认为抢到红包的个数与手机品牌有关?

(Ⅱ)不考虑其它因素,现要从甲、乙两品牌的种型号中各选出种型号的手机进行促销活动,求恰有一种型号是“优良”,另一种型号是“一般”的概率;

参考公式:随机变量的观察值计算公式:

其中.临界值表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了实现绿色发展,避免浪费能源,某市政府计划对居民用电采用阶梯收费的方法.为此,相关部分在该市随机调查了户居民六月份的用电量(单位:)和家庭收入(单位:万元),以了解这个城市家庭用电量的情况.

用电量数据如下:

.

对应的家庭收入数据如下:

.

(Ⅰ)根据国家发改委的指示精神,该市计划实施阶阶梯电价使的用户在第一档电价为/的用户在第二档电价为/的用户在第三档电价为/,试求出居民用电费用与用电量间的函数关系

(Ⅱ)以家庭收入为横坐标电量为纵坐标作出散点图(如图),求关于的回归直线方程(回归直线方程的系数四舍五入保留整数).

(Ⅲ)小明家的月收入按上述关系估计小明家月支出电费多少元

参考数据:.

参考公式:一组相关数据,…,的回归直线方程的斜率和截距的最小二乘法估计分别为其中为样本均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1 , l2 , 直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为(  )
A.16
B.14
C.12
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着业的迅速发展计算机也在迅速更新换代,平板电脑因使用和移动便捷以及时尚新潮性,而备受人们尤其是大学生的青睐,为了解大学生购买平板电脑进行学习的学习情况,某大学内进行了一次匿名调查,共收到1500份有效问卷.调查结果显示700名女学生中有300人,800名男生中有400人拥有平板电脑.

(Ⅰ)完成下列列联表:

(Ⅱ)分析是否有的把握认为购买平板电脑与性别有关?

附:独立性检验临界值表:

(参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数(其中),若函数的图象与轴的任意两个相邻交点间的距离为,且函数的图象过点

1)求的解析式;

2)求的单调增区间:

3)求的值域.

查看答案和解析>>

同步练习册答案