精英家教网 > 高中数学 > 题目详情

【题目】已知定义在(0,+∞)上的函数f(x)满足f′(x)+2f(x)= ,且f(1)= ,则不等式f(lnx)>f(3)的解集为(
A.(﹣∞,e3
B.(0,e3
C.(1,e3
D.(e3 , +∞)

【答案】C
【解析】解:由题意f′(x)+2f(x)= ,即[e2x(x)]′=lnx+ , 两边积分可知:e2x(x)=xlnx﹣x+ x+C,
∴f(x)=
由f(1)= ,代入解得:C=
∴f(x)=
求导f′(x)= ,由e2x>0
令g(x)=﹣2xlnx+lnx+x﹣1,求导g′(x)=﹣2lnx+ ﹣1,
令g′(x)=0,解得:x=1,
当x>1时,g′(x)<0,函数单调递减,
当0<x<1时,g′(x)>0,函数单调递增,
∴当x=1时,f′(x)取最大值,最大值为0,
即f′(x)≤0恒成立,
∴f(x)= ,单调递减,
∴由f(lnx)>f(3),则0<lnx<3,
即1<x<e3
故不等式的解集(1,e3),
故选:C.
由题意可知:[e2x(x)]′=lnx+ ,两边积分,求得函数f(x)的解析式,求导,利用函数的单调性,即可求得不等式的解集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图, 分别是 的中点,将 沿直线 折起,使二面角 的大小为 ,则 与平面 所成角的正切值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,命题 ,命题 .
(1)若 为真命题,求实数 的取值范围;
(2)若命题 是假命题, 命题 是真命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是函数 的导数, ,若 ,则实数 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期中考试的学生中随机抽出60名学生将其物理成绩(均为整数)分成六段[40,50),[50,60),,[90,100]后得到如图所示的频率分布直方图观察图形的信息回答下列问题:

(1)求分数在[70,80)内的频率并补全这个频率分布直方图;

(2)统计方法中同一组数据常用该组区间的中点值作为代表据此估计本次考试中的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的第2项、第5项分别为二项式(2x+1)5展开式的第5项、第2项的系数.
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn , 若存在实数λ,使 恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300.现在这种羊毛衫的成本价是100/ 件,商场以高于成本价的价格(标价)出售. 问:

1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?

2)通常情况下,获取最大利润只是一种理想结果,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(Ⅰ)证明:不论t为何值,直线l与曲线C恒有两个公共点;
(Ⅱ)以α为参数,求直线l与曲线C相交所得弦AB的中点轨迹的参数方程,并判断该轨迹的曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线 ,过点 的直线 为参数)与曲线 相交于点 , 两点.
(1)求曲线 的平面直角坐标系方程和直线 的普通方程;
(2)求 的值.

查看答案和解析>>

同步练习册答案