精英家教网 > 高中数学 > 题目详情
20.已知an=cos$\frac{2nπ}{3}$,Sn是数列{an}的前n项和,则S2015=(  )
A.-2B.-1C.0D.1

分析 由f(n)=cos$\frac{2nπ}{3}$是以T=3为周期的周期函数可得数列每相邻三项的和,则答案可求.

解答 解:an=cos$\frac{2nπ}{3}$
f(n)=cos$\frac{2nπ}{3}$是以T=3为周期的周期函数,
∴a1+a2+a3=-$\frac{1}{2}$-$\frac{1}{2}$+1=0,

a3k+1+a3k+2+a3k+3=0,
则S2015=a1+a2+a3+a4+…+a2015
=0×671+(-$\frac{1}{2}$-$\frac{1}{2}$)=-1.
故选B.

点评 本题考查了三角函数的周期性,考查了数列的求和,关键是对规律的发现,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AD⊥AB,BC∥AD,AD=2AB=2BC=2.求证:PC⊥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\left\{\begin{array}{l}{-x+10,x>a}\\{{x}^{2}+2x,x≤a}\end{array}\right.$,若对任意b,总存在实数x0,使得f(x0)=b成立,则实数a的取值范围是[-5,11].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}的前n项和为Sn,a1=1,an+an+1=2n-1,则Sn=$\left\{\begin{array}{l}{\frac{n(n-1)}{2},n为偶数}\\{\frac{{n}^{2}-n+2}{2},n为奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与y轴的交点的纵坐标为yn,令bn=2yn,b1•b2•…b2010的值为22010•2010!.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设如图是某几何体的三视图,求该几何体的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=x2+4x+1,
(1)求f(2x-1)的解析式;
(2)当x=4时,求f(x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素,又点P到原点的距离|OP|≥5,则这样的点P的个数为20.

查看答案和解析>>

同步练习册答案