精英家教网 > 高中数学 > 题目详情

【题目】由于工作需要,某公司准备一次性购买两台具有智能打印、扫描、复印等多种功能的智能激光型打印机.针对购买后未来五年内的售后,厂家提供如下两种方案:

方案一:一次性缴纳元,在未来五年内,可免费上门维修次,超过次后每次收取费用元;

方案二:一次性缴纳元,在未来五年内,可免费上门维修次,超过次后每次收取费用.

该公司搜集并整理了台这款打印机使用五年的维修次数,所得数据如下表所示:

维修次数

台数

以这台打印机使用五年的维修次数的频率代替台打印机使用五年的维修次数的概率,记表示这两台智能打印机五年内共需维修的次数.

1)求的分布列及数学期望;

2)以两种方案产生的维修费用的期望值为决策依据,写出你的选择,并说明理由.

【答案】(1)详见解析(2)应使用方案一,详见解析

【解析】

1的所有可能取值为,分别求出对应概率,列出分布列并求出数学期望即可;

2)分别求出两种方案产生的修理费用的分布列,进而可求出对应的期望值,比较二者大小可得出答案.

1)依题意,台打印机使用五年维修1次的概率为,维修2次的概率为,维修3次的概率为,维修4次的概率为.

的所有可能取值为

.

的分布列为

.

2)设使用方案一,产生的费用为元,则的分布列为

.

设使用方案二,产生的费用为元,则的分布列为

.

故应使用方案一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.

(1)求异面直线AD1EC所成角的大小;

(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某制药厂准备投入适当的广告费,对产品进行宣传,在一年内,预计年销量Q(万件)与广告费x(万元)之间的函数关系为Qx≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需后期再投入32万元,若每件售价为年平均每件投入的150%”年平均每件所占广告费的50%”之和(注:投入包括年固定投入后期再投入).

1)试将年利润w万元表示为年广告费x万元的函数,并判断当年广告费投入100万元时,企业亏损还是盈利?

2)当年广告费投入多少万元时,企业年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),边长为的正方形中,分别为上的点,且,现沿剪切、拼接成如图(2)的图形,再将沿折起,使三点重合于点,如图(3.

1)求证:

2)求二面角最小时的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为,点为棱的中点.下列结论:①线段上存在点,使得平面;②线段上存在点,使得平面;③平面把正方体分成两部分,较小部分的体积为,其中所有正确的序号是(

A.B.C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市在开展创建全国文明城市活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求出a的值;

2)若已从年龄较小的第12组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①若为假命题,则均为假命题;②命题,则的否命题为,则;③命题的否定是;④在中,的充要条件.其中正确的命题是(

A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线为焦点,且过点

1)求双曲线与其渐近线的方程

2)若斜率为1的直线与双曲线相交于两点,且为坐标原点),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年国庆黄金周影市火爆依旧,《我和我的祖国》、《中国机长》、《攀登者》票房不断刷新,为了解我校高三2300名学生的观影情况,随机调查了100名在校学生,其中看过《我和我的祖国》或《中国机长》的学生共有80位,看过《中国机长》的学生共有60位,看过《中国机长》且看过《我和我的祖国》的学生共有50位,则该校高三年级看过《我和我的祖国》的学生人数的估计值为( )

A.1150B.1380C.1610D.1860

查看答案和解析>>

同步练习册答案