【题目】已知一条曲线C在y轴右侧,曲线C上任意一点到点的距离减去它到y轴的距离都等于1.
(1)求曲线C的方程;
(2)直线与轨迹C交于A,B两点,问:在x轴上是否存在定点,使得直线与关于x轴对称而与直线的位置无关,若存在,求出点M的坐标,若不存在,请说明理由.
【答案】(1)(2)存在,
【解析】
(1)直接根据题意得到方程化简得到答案.
(2)设,,联立方程,根据韦达定理得到根与系数关系,计算,化简整理得到答案.
(1)设是曲线C上任意一点,那么点满足:,
化简得,又因为曲线C在y轴右侧,故,
所以曲线C方程为:.
(2)在x轴上存在定点使得直线与关于x轴对称而与位置无关.
理由如下:
设直线与曲线C的交点坐标为,,
由,消去x,整理得,,
由韦达定理得,,.
假设存在点,使得直线与关于x轴对称而与位置无关,
则对任意实数m恒成立,即对任意实数m恒成立,
而,所以,
所以,又,所以.
故当对任意实数m,,
即在x轴上存在点,使得直线与关于x轴对称而与位置无关.
科目:高中数学 来源: 题型:
【题目】已知是定义域为的偶函数,对,有,且当时,,函数.现给出以下命题:①是周期函数;②的图象关于直线对称;③当时,在内有一个零点;④当时,在上至少有六个零.其中正确命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】请从下面三个条件中任选一个,补充在下面的横线上,并解答.
①
②
③的面积为
在中,内角A,B,C所对的边分别为a,b,c,已知b-c=2,cosA=, .
(1)求a;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在中,,,,分别为,的中点是由绕直线旋转得到,连结,,.
(1)证明:平面;
(2)若,棱上是否存在一点,使得?若存在,确定点 的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对任意,给定区间,设函数表示实数与所属的给定区间内唯一整数之差的绝对值.
(1)当时,求出的解析式;时,写出绝对值符号表示的解析式;
(2)求,,判断函数的奇偶性,并证明你的结论;
(3)当时,求方程的实根.(要求说明理由,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】采购经理指数(PMI)是衡量一个国家制造业的“体检表”,是衡量制造业在生产新订单、商品价格、存货、雇员、订单交货、新出口订单和进口等八个方面状况的指数,下图为2018年9月—2019年9月我国制造业的采购经理指数(单位:%).
(1)求2019年前9个月我国制造业的采购经理指数的中位数及平均数(精确到0.1);
(2)从2019年4月—2019年9月这6个月任意选取2个月,求这两个月至少有一个月采购经理指数与上个月相比有所回升的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】英国统计学家E.H.辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如下表所示(单位:件):
法官甲 | 法官乙 | ||||||
终审结果 | 民事庭 | 行政庭 | 合计 | 终审结果 | 民事庭 | 行政庭 | 合计 |
维持 | 29 | 100 | 129 | 维持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合计 | 32 | 118 | 150 | 合计 | 100 | 25 | 125 |
记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,和,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,和,则下面说法正确的是
A. ,,B. ,,
C. ,,D. ,,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com