分析 (Ⅰ)求出圆C的普通方程,即可求圆C的极坐标方程;
(Ⅱ)利用参数方法求|MA|2+|MB|2的最大值.
解答 解:(Ⅰ)因为圆C的参数方程为$\left\{\begin{array}{l}x=3+2cosθ\\ y=-3+2sinθ\end{array}\right.$(θ为参数),
故它的普通方程为(x-3)2+(y+3)2=4,…(2分)
即x2+y2-6x+6y+14=0.
圆C的极坐标方程为ρ2-6ρcosθ+6ρsinθ+14=0.…(5分)
(Ⅱ)|MA|2+|MB|2=(2cosθ)2+(-3+2sinθ)2+(3+2sinθ)2+(2sinθ)2
$\begin{array}{l}=26+12(cosθ-sinθ)\\=26+12\sqrt{2}cos({θ+\frac{π}{4}})\end{array}$
$≤26+12\sqrt{2}$,当$θ=-\frac{π}{4}$时,等号成立.
故|MA|2+|MB|2的最大值为$26+12\sqrt{2}$.…(10分)
点评 本题考查参数方程、普通方程、极坐标方程的互化,考查参数方程的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | π+1 | C. | π | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com