精英家教网 > 高中数学 > 题目详情
以椭圆的焦点为顶点,以该椭圆的顶点为焦点的双曲线方程是         .
.

试题分析:设所求的双曲线方程为,则由椭圆的方程知其焦点坐标为,顶点坐标为,所以得到,即可求出双曲线的方程.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>0,b>0)的离心率与双曲线=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin·x+cos·y-l=0相切(为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足(O为坐标原点),当时,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的焦点在轴上.
(1)若椭圆的焦距为1,求椭圆的方程;
(2)设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线轴与点,并且,证明:当变化时,点在某定直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A,B两点.
①若线段AB中点的横坐标为-,求斜率k的值;
②已知点M(-,0),求证:·为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知线段AB=4,动圆O1与线段AB相切于点C,且AC-BC=2
2
,过点A,B分别作⊙O1的切线,两切线相交于点P,且P、O1均在AB的同侧.
(Ⅰ)建立适当坐标系,当O1位置变化时,求动点P的轨迹E方程;
(Ⅱ)过点B作直线交曲线E于点M、N,求△AMN面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,动点P和点M(-2,0)、N(2,0)满足|
MN
|•|
MP
|+
MN
NP
=0
,则动点P(x,y)的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线::的焦点分别为,点的一个交点,则△的形状是(   )
A.锐角三角形B.直角三角形C.钝角三角形D.都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆和双曲线的公共焦点,是他们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为(   )
A.B.C.3D.2

查看答案和解析>>

同步练习册答案