精英家教网 > 高中数学 > 题目详情
过椭圆
x2
a2
+
y2
b2
=1
左准线上一点P与左焦点F的连线分别与椭圆交于A、B两点,若
PA
=λ
AF
PB
=μ
BF
,求λ+μ
分析:利用椭圆的第二定义,
AF
AC
=
BF
BD
=e,利用△PAC∽△PBD将向量之比转化为边之比,即可求得λ+μ.
解答:解:过A,B两点做准线的垂线分别交准线于C,D两点.准线与X轴交点为E,
由椭圆的第二定义得:
AF
AC
=e,
BF
BD
=e,
PA
AF
PB
BF
,△PAC∽△PBD,
PA
AC
=
PB
BD

∴λ+μ=
PA
AF
+
PB
BF
=
PA
e•AC
-
PB
e•BD
=
1
e
PA
AC
-
PB
BD
)=0.
点评:本题考查椭圆的第二定义,考查平行向量与共线向量,考查三角形相似,考查化归思想与比例性质,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
,(a>b>0)的两焦点分别为F1、F2|F1F2|=4
2
,离心率e=
2
2
3
.过直线l:x=
a2
c
上任意一点M,引椭圆C的两条切线,切点为A、B.
(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆
x2
a2
+
y2
b2
=1
(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明).
(2)利用(1)中的结论证明直线AB恒过定点(2
2
,0
);
(3)当点M的纵坐标为1时,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁波模拟)已知:圆x2+y2=1过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆
x2
a2
+
y2
b2
=1
相交于A,B两点记λ=
OA
OB
,且
2
3
≤λ≤
3
4

(Ⅰ)求椭圆的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求△OAB的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:圆x2+y2=1过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆
x2
a2
+
y2
b2
=1相交于A,B两点记λ=
OA
OB
,且
2
3
≤λ≤
3
4

(1)求椭圆的方程;
(2)求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(如图)过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F任作一条与两坐标轴都不垂直的弦AB;若点M在x轴上,且使得MF为△AMB的一条内角平分线,则称点M为该椭圆的“左特征点”.
(1)求椭圆
x2
5
+y2
=1的“左特征点”M的坐标.
(2)试根据(1)中的结论猜测:椭圆
x2
a2
+
y2
b2
=1(a>b>0)的“左特征点”M是一个怎么样的点?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A做圆x2+y2=b2的切线,切点为B,延长AB交抛物线于y2=4ax于点C,若点B恰为A、C的中点,则
a
b
的值为
1+
5
2
1+
5
2

查看答案和解析>>

同步练习册答案