精英家教网 > 高中数学 > 题目详情
设{an}是一个公差为1的等差数列,且a1+a2+a3+…+a98=137,则a2+a4+a6+…a98=
 
分析:由等差数列的定义知a1=a2-d,a3=a4-d,a5=a6-d,…,a97=a98-d,共有49项,所以∴S98=a1+a2+a3+…+a98=(a2-1)+(a4-1)+(a6-1)+…+(a98-1)+a2+a4+a6+…+a98=137,从而求解.
解答:解:设d=1,由等差数列的定义知a1=a2-d,a3=a4-d,a5=a6-d,…,a97=a98-d,共有49项
∴S98=a1+a2+a3+…+a98
=a1+a3+a5+a7+…+a97+a2+a4+a6+…+a98 
=(a2-1)+(a4-1)+(a6-1)+…+(a98-1)+a2+a4+a6+…+a98 
=2(a2+a4+a6+…+a98)-49
=137 
∴a2+a4+a6+…+a98=
137+49
2
=93
故答案为93.
点评:考查学生运用等差数列性质的能力,考查学生逻辑推理,归纳总结的能力,此题关键是根据等差数列的定义得出a1=a2-d,a3=a4-d,a5=a6-d,…,a97=a98-d,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是一个公差为d(d>0)的等差数列.若
1
a1a2
+
1
a2a3
+
1
a3a4
=
3
4
,且其前6项的和S6=21,则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是一个公差为d(d≠0)的等差数列,它的前n项和为Sn,S10=110且a1,a2,a4成等比数列.
(Ⅰ)证明a1=d;
(Ⅱ)求公差d的值和数列{an}的前n项和Sn
(Ⅲ)设bn=
1Sn
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封一模)设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列an的通项公式an
(Ⅱ)数列{bn}满足bn=n•2an,设{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•朝阳区二模)设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)数列{bn}满足bn=2an,求b1•b2•…•bn(用含n的式子表示).

查看答案和解析>>

同步练习册答案