精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=xax+(a1)

1)讨论函数的单调性;

2)证明:若,则对任意xxxx,有

【答案】1)见解析(2)见解析

【解析】

分析:(1)根据对数函数定义可知定义域为大于0的数,求出f′(x)讨论当a-1=1时导函数大于0,函数单调递增;当a-1>1时讨论函数的增减性;(2)构造函数g(x)=f(x)+x,求出导函数,根据a的取值范围得到导函数一定大于0,则g(x)为单调递增函数,则利用当x1>x2>0时有g(x1)-g(x2)>0即可得证.

详解:

(1)的定义域为.

.

(i)若,则,故上单调递增.

(ii)若,而,故,则当时,

时,

单调递减,在单调递增.

(iii)若,同理可得单调递减,在单调递增.

(2)考虑函数

由于,故,即单调增加,从而当时有,即,故

时,有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.

1)求曲线的直角坐标方程和直线的普通方程;

2)设点为曲线上的动点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个五位自然数数称为跳跃数,如果同时有(例如1328440329都是跳跃数,而123455437194333都不是跳跃数),则由12345组成没有重复数字且14不相邻的跳跃数共有_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为,且对任意的实数都有是自然对数的底数),且,若关于的不等式的解集中恰有唯一一个整数,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 是正三角形,四边形是矩形,且.

(1)求证:平面平面

(2)若点在线段上,且,当三棱锥的体积为时,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx22pyp0)的焦点为(0,1

1)求抛物线C的方程;

2)设直线l2ykx+m与抛物线C有唯一公共点P,且与直线l1y=﹣1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点PPMN的顶点,M(﹣20),N20),直线PMPN的斜率之积为﹣

1)求点P的轨迹E的方程;

2)设四边形ABCD的顶点都在曲线E上,且ABCD,直线ABCD分别过点(﹣10),(10),求四边形ABCD的面积为时,直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若直线且曲线在A处的切线与在B处的切线相互平行,求a的取值范围;

(Ⅱ)设在其定义域内有两个不同的极值点若不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案