【题目】已知函数f(x)=x-ax+(a-1),。
(1)讨论函数的单调性;
(2)证明:若,则对任意x,x,xx,有。
【答案】(1)见解析(2)见解析
【解析】
分析:(1)根据对数函数定义可知定义域为大于0的数,求出f′(x)讨论当a-1=1时导函数大于0,函数单调递增;当a-1>1时讨论函数的增减性;(2)构造函数g(x)=f(x)+x,求出导函数,根据a的取值范围得到导函数一定大于0,则g(x)为单调递增函数,则利用当x1>x2>0时有g(x1)-g(x2)>0即可得证.
详解:
(1)的定义域为.
.
(i)若即,则,故在上单调递增.
(ii)若,而,故,则当时,;
当及时,,
故在单调递减,在,单调递增.
(iii)若即,同理可得在单调递减,在,单调递增.
(2)考虑函数,
则
由于,故,即在单调增加,从而当时有,即,故,
当时,有.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)设点,为曲线上的动点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个五位自然数数称为“跳跃数”,如果同时有或(例如13284,40329都是“跳跃数”,而12345,54371,94333都不是“跳跃数”),则由1,2,3,4,5组成没有重复数字且1,4不相邻的“跳跃数”共有_____个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有唯一一个整数,则实数的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py(p>0)的焦点为(0,1)
(1)求抛物线C的方程;
(2)设直线l2:y=kx+m与抛物线C有唯一公共点P,且与直线l1:y=﹣1相交于点Q,试问,在坐标平面内是否存在点N,使得以PQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P是△PMN的顶点,M(﹣2,0),N(2,0),直线PM,PN的斜率之积为﹣ .
(1)求点P的轨迹E的方程;
(2)设四边形ABCD的顶点都在曲线E上,且AB∥CD,直线AB,CD分别过点(﹣1,0),(1,0),求四边形ABCD的面积为时,直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(Ⅰ)若直线且曲线在A处的切线与在B处的切线相互平行,求a的取值范围;
(Ⅱ)设在其定义域内有两个不同的极值点且若不等式恒成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com