精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

【答案】(1)(2)

【解析】试题分析:(1)由已知,根据解析式中绝对值的零点(即绝对值等于零时的值),将函数的定义域分成若干段,从而去掉绝对值号,再分别计算各段函数的相应不等式的解集,从而求出原不等式的解集;

(2)由题意,将不等式转化为,可构造新函数,则问题再转化为,由(1)可得,即,从而问题可得解.

试题解析:(1)因为

所以当时,由

时,由

时,由.

综上,的解集为.

(2)(方法一)由

因为,当且仅当取等号,

所以当时,取得最小值5,

所以当时,取得最小值5,

,即的取值范围为.

(方法二)设,则

时,取得最小值5,

所以当时,取得最小值5,

,即的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的部分图象如图,是图象的一个最低点,图象与轴的一个交点坐标为,与轴的交点坐标为.

1)求的值;

2)关于的方程上有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和.

(1)求g(x)和h(x)的解析式;

(2)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求f(1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;

(2)求曲线与曲线交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数u(x)=

(Ⅰ)若曲线u(x)与直线y=0相切,求a的值.

(Ⅱ)若e+1<a<2e,设f(x)=|u(x)|﹣,求证:f(x)有两个不同的零点x1,x2,且|x2﹣x1|<e.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线Cρsin2θ2acos θ(a>0),过点P(2,-4)的直线l (t为参数)与曲线C相交于MN两点.

(1)求曲线C的直角坐标方程和直线l的普通方程;

(2)|PM||MN||PN|成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个半圆形湖面景点的平面示意图.已知为直径,且km,为圆心,为圆周上靠近的一点,为圆周上靠近的一点,且.现在准备从经过建造一条观光路线,其中是圆弧是线段.,观光路线总长为.

1)求关于的函数解析式,并指出该函数的定义域;

2)求观光路线总长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若将判断框内“”改为关于的不等式“”且要求输出的结果不变,则正整数的取值是

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各题中,哪些pq的充要条件?

1p:四边形是正方形,q:四边形的对角线互相垂直且平分;

2p:两个三角形相似,q:两个三角形三边成比例;

3

4是一元二次方程的一个根,.

查看答案和解析>>

同步练习册答案