精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=AB=6,BC=8,DF=5.
(1)若PB⊥BC,证明平面BDE⊥平面ABC.
(2)求直线BD与平面ABC所成角的正切值.
考点:直线与平面所成的角,平面与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)由已知得DE⊥AC,DE2+EF2=DF2,从而DE⊥平面ABC,由此能证明平面BDE⊥平面ABC.
(2)由DE⊥平面ABC,得∠DBE是直线BD与平面ABC所成的角,由此能求出直线BD与平面ABC所成角的正切值.
解答: (1)证明:∵在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.
PA⊥AC,PA=AB=6,BC=8,DF=5,
∴DE⊥AC,DE=3,EF=4,DF=5,
∴DE2+EF2=DF2,∴DE⊥EF,
又EF∩AC=F,∴DE⊥平面ABC,
又DE?平面BDE,∴平面BDE⊥平面ABC.
(2)解:∵DE⊥平面ABC,∴PA⊥平面ABC,∴PA⊥AB,
∵PB⊥BC,∴AB⊥BC,
∴AC=
36+64
=10,∴BE=
1
2
AC=5

由DE⊥平面ABC,得∠DBE是直线BD与平面ABC所成的角,
tan∠DBE=
DE
BE
=
3
5

∴直线BD与平面ABC所成角的正切值为
3
5
点评:本题考查平面与平面垂直的证明,考查直线与平面所成角的正切值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα,tanβ是一元二次方程3x2+5x-2=0的两根,且α∈(0,
π
2
),β∈(
π
2
,π),
(1)求cos(α-β)的值;
(2)求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

x-4
y
=2
x-y
,则x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=y1+y2,y1
x+1
成正比例,y2与x+3成反比例,并且x=0时,y=4,x=3时y=5,求y与x之间的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ADE-BCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点,运动向量方法证明:
(1)OM∥平面BCF;
(2)平面MDF⊥平面EFCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数在(0,+∞)上单调递增的是(  )
A、y=(x-1)2
B、y=lg(x+3)
C、y=21-x
D、y=
1
x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-
2
,0),B(
2
,0),且动点P满足|PA|-|PB|=2,则动点P的轨迹与直线y=k(x-2)有两个交点的充要条件为k∈
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x-
3
x
-m的一个零点在区间(1,3)内,则实数m的取值范围是(  )
A、(-1,7)
B、(0,5)
C、(-7,1)
D、(1,5)

查看答案和解析>>

同步练习册答案